MATH20902: Discrete Maths, Solutions to Problem Set 4

(1) (Part of Question B4 on 2019’s exam). We are given the degrees of all the
internal nodes, so any remaining vertices in the tree must be leaves: that is, they
must have deg(v) = 1. The degree sequence must thus be of the form

(1,...,1,2,2,2,3,3,3,4), (L.1)
N——

k ones

where the number of leaves, k, is yet to be determined.

A tree whose degree sequence has the form given in Eqn. hasn = |V| = k47
vertices and so also has |E| =n—1 = k+6 edges, as a tree on n vertices must have
exactly |F| =n — 1 edges. Further,

D deg(v) = k+2+2+2+3+3+3+4 = k+19,

veV

so the Handshaking Lemma tells us

> deg(v) =k +19 = 2|E| = 2(k +6).

veV

One can solve this to find £ = 7, which implies that the only possible degree sequence

1S
(1,1,1,1,1,1,1,2,2,2,3,3,3,4).

An example of such a tree appears below. The vertices of degree one, two, three and
four are coloured, respectively, white, yellow, blue and red. There are, of course,
many other non-isomorphic trees with the same degree sequence.

(2) (after Jungnickel’s Exercise 4.1.2).

The problem discusses a graph GG with n vertices:

(1) = (i)

If G is unicyclic, take e to be any edge in the cycle. The H = G\e is acyclic as (a)
the removal of e will destroy the lone cycle in G and (b) removing an edge cannot
create any cycles. And H is still connected—part of the definition of unicyclic is
that the graph is connected and removing a single edge from a cycle still leaves a
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path that threads through all the vertices in the cycle—so H is a connected, acyclic
graph: a tree.

(ii) = (i)

From (ii) we know that G is connected, for it is still a tree (and thus connected)
even if we remove certain of its edges. Also from (ii), we know that G has one more
edge than a tree. But by Theorem 8.1 from lecture, a tree on n vertices has exactly
(n — 1) edges, so G must have n edges.

From (iii), we have that G is connected. We also know, from the lemma about
acyclic graphs, that if G has n vertices and n edges it must contain at least one
cycle, for the lemma says that an acyclic graph on n vertices has at most n — 1
edges. So all we need to prove is that G has exactly one cycle.

Suppose otherwise. That is, suppose GG has two or more distinct cycles. Focus
attention on a pair of distinct cycles and choose an edge e that appears in one of
these cycles, but not in the other. Now consider H = G\e. This graph still contains
a cycle (the one that didn’t include e), but on the other hand it must, by the main
theorem about trees mentioned in lecture, be a tree as it’s connected (cutting a single
edge out of a cycle doesn’t spoil connectedness) and it has n — 1 edges. And trees
are acyclic, which yields a contradiction. Thus a connected G with |E| = |V| =n
cannot have two distinct cycles and so must be unicyclic.

(3) (after Jungnickel’s Lemma 4.1.1).
The first of the proofs needed here follows from one of the lemmas we proved in
lecture:
(1) = (i)
To say that GG is a tree means that it is a connected acyclic graph, so the first part
of (ii) is true automatically. The second part, that adding any edge must create a
cycle, follows from the fact—proved in lecture—that G must have exactly (n — 1)
edges and from our lemma about the maximal number of edges in acyclic graphs,
which states that an acyclic graph on n vertices has at most (n — 1) edges.
(i) = (iii)
Statement (iii) has two aspects: first, there is a path connecting any two vertices
in G (in other words, G has a single connected component) and second, there is
only one such path. One can prove the first part by contradiction: suppose that
G has more than one connected component. Then it is possible to add an edge
that connects two previously disjoint components and this process cannot create a
cycle (otherwise the two components would have been connected already). But this
contradicts (ii).

The second aspect, that the path is unique, also follows from the absence of
cycles. Suppose there are two vertices—call them a and b—that are connected by
more than one path. That is, there exist two sequences of vertices

(Voy -+ -y Uny) and (Ug -y Upy)



Figure 1: Two different paths, one shown in orange with long dashes and the other
i blue, with shorter dashes, connect vertices a and b. In the terms used in the
answer to Problem ny =7 and ny = 8 while jo =2, [y =2 and ls = 3.

with ug = v9 = a and u,, = v,, = b such that all the edges (v;_1,v;) 1 < j < my
exist, as do all those given by (ug_1,ux) 1 < k < ny. Further, the two lists of vertices
have to differ: there must be at least one vertex that appears in one path, but not
in the other. Then, tracing over one path in the original direction and the other in
reverse, we can construct a walk that starts and finishes at a = ug = vg

Now, as Figure [1] illustrates, this walk may not be a cycle. It’s possible, for
example, that the edges (vg,v;) and (ug, u1) are the same. But as the original paths
differ from each other, there must be some smallest index jy such that v;, = u;,,
but vj,41 # wj,+1. Some time later, the two paths must come back together (they
finish in the same place, at b), so let us find the smallest numbers {; > 0 and Iy > 0
such that the two paths meet up again after [; and [l steps, respectively. That is,
Ujo+is = Wjo+la- Then

(Wjy = Vjos Wjor1s - - s Ujortly = Vjolys Vjotla—15 - - + 5 Vjo = W)

is a cycle, contradicting (ii).

If any two vertices of GG are connected, then obviously GG is a connected graph. And
if the paths that connect pairs of vertices are unique, the graph must be acyclic. For
suppose the graph did contain a cycle (vg, vy, ...,v,_1,0p): then there are two paths
connecting vy to v1. The first consists of the single edge (v, v1) while the second
comes from going around the cycle in the opposite sense: (vg, vy_1,...,01).

(4). The theme of this problem is that a tree can’t have very many edges, so if it
has a vertex of high degree, it must compensate by also having lots of vertices with
low degree. I'll give two solutions, one that involves the Handshaking Lemma and
another that’s based on a clever bit of graph surgery.

Solution based on the Handshaking Lemma
Call the tree under discussion G(V, FE) and say there are |V| = n vertices. We're
interested in the case

max deg(v) =k



and we're free to imagine that the vertices are numbered in order of increasing
degree, so that the leaves come first and the vertices with maximal degree come last.
Suppose there are L leaves and M vertices of maximal degree, then our numbering

scheme means
1 f1<;<L

deg(“ﬂ'):{ ko In-M+1<j<n

and all other vertices, those v; with index L < j < (n — M), have 2 < degv; < k.
Now, the Handshaking Lemma says

> deg(v) =2|E| =2(n — 1) (4.1)

=1

where the second equality follows because G is a tree, so |E| =n — 1. On the other
hand,

n

Zdeg(vj) = Zdeg(vj)+ i deg(v;) + Z deg(v;)

j=L+1 j=n—M+1

L+ (”i: deg(vﬂ) + Mk

j=L+1

> L+2(n—M—L)+ Mk
> 2n—2M — L+ Mk (4.2)

where the penultimate line follows because those v; that contribute to the sum in
the previous line have degree at least two.

Putting (4.1)) and (4.2)) together yields
M—2>m—2M—L+Mk o L > (k-2)M+2  (43)

The smallest possible number of leaves thus occurs when there is only a single vertex
of maximal degree, so M =1 and becomes L > k.

Conversely, if L = k, implies M = 1 and then the Handshaking Lemma
implies that all other vertices must have degree two. Thus trees with maximal degree
k and exactly k leaves are “star shaped”: they have a single, central degree-k vertex
and k£ “arms”, each of which consists of a chain of zero or more degree-two vertices
that ends in a leaf. See the examples for k£ = 5 below.

Yo

Solution based on graph surgery
This lovely argument, which is illustrated in Figure [2l was invented by Goran Malic,
a postgrad who helped with the example classes in 2014.
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Figure 2:  An approach to Problem . The graph at left has a single vertex of
mazximal degree k = 6 that’s labelled v. The graph at right is G\v and is a forest
consisting of sixz trees: Ty ---Ty are isolated vertices while Ty and Tg are smaller
trees, each of which has at least two leaves.

Choose a vertex of maximal degree—call it, say, v—such that deg(v) = k, and
form the graph G’ = G\v. Since the original graph G was a tree, the new one
must have k£ connected components, each of which is itself a tree: let’s call them
Ty, T, ... Ty. Each of the T; must be either

e an isolated vertex

e a tree with with two or more vertices. In the latter case T must have at least
two leaf nodes (this follows from a technical lemma proved in the lecture about
trees).

Either way, the edge connecting T to v can eliminate at most one leaf node, so each
T; contains at least one vertex that is a leaf node in the original graph G. But this
means that G has at least k leaves, which is the result we sought.

(5). If (dy, da, ..., d,) is the degree sequence of a tree G(V, E) then |V| = n and
|E| = |V|—1=n—1. And if we number the vertices in order of increasing degree,
the Handshaking Lemma says

Zdj = Zdeg(vj) = 92|E| =2(n — 1), (5.1)

which proves the easier half of the if-and-only-if statement in the problem.

The other half says that if a sequence of positive integers (dy, da, . .., d,) satisfies
, then there exists a tree that actually has this degree sequence. I'll offer two
proofs of this, one by induction on the number of vertices (or, equivalently, on the
number of entries in the degree sequence) and another, constructive proof invented
by Simon Ge, a student who did Discrete Maths in 2016.

Inductive argument:

Take n = 2 as the base case becasue the statement of theorem we're trying to prove
involves a sequence (dy, da, ..., d,) of positive integers and the only vertex in a one-
vertex tree has degree zero. The only two-element sequence that is compatible with



is (di,ds) = (1,1), which is also the degree sequence of the only two-vertex
tree.

Now for the inductive step: suppose the result is true for all degree sequences
that include ng or fewer entries and satisfy . Then consider a degree sequence

(d17d27' - 7dn07dn0+1) (52)

that has one more entry, but still satisfies with n = ng+1. We know—following
an argument made in the lecture about trees—that any such sequence must include
at least two ones, so d; = dy = 1. We also know that d,, 1 > 1, as the entries in the
degree sequence are arranged in ascending order and can’t be satisfied if the
entries d; are all one. But this means, perhaps after some rearrangement to put the
entries back into increasing order, that

(day ... dpyydpgs1 — 1) (5.3)

is also a degree sequence satisfying , but with n = ng entries. That is, we can
remove d; = 1 from the beginning of and reduce the final, largest entry by
one and we’ll get a new, shorter sequence that still satisfies . This new, shorter
sequence has only ng entries so, by the inductive hypothesis, there is a tree G(V, F)
with |V]| = ng whose degree sequence is composed of the same numbers as .
The tree G thus contains a vertex of degree (d,,+1 — 1): call this vertex v. We can
now make a new graph H (V' E’) by adding a single new leaf node to G whose sole
edge attaches it to v: the graph H produced in this way is also a tree and has degree
sequence

(17 d27 s adnoa dno-i-l)
which is the same as ([5.2)), so we are finished.

The argument above contains the seeds of a recursive algorithm that accepts an
arbitrary list of positive integers d; < d;;; satisfying and constructs a tree
having the list as its degree sequence: you might try to write this algorithm out in
detail. Typically there are lots of non-isomorphic trees that have the same degree
sequence, as Simon Ge’s constructive proof makes clear.

Constructive proof:

Given a sequence (dy, ds, ..., d,) that satisfies , we begin by removing those
entries that are equal to one. There are always at least two of these, but there must
also be some entries bigger than one. Let’s say that there are k < n entries equal
to one, so that dy = dy = --- =dp =1, but 1 < dp1 < dgao < -+ < d,. The
construction then proceeds as follows:

e Build a forest such as the one illustrated in Figure [3| which consists of n — k
star-shaped graphs, one for each d; > 1. One can also think of this as a forest
whose n — k connected components are isomorphic to the complete bipartite
graphs Ky 4, with k < j < n.

e Now, repeatedly merge two of the trees in the forest as shown in Figure
That is, first select two trees (arbitrarily), then choose a leaf in each one and
replace the chosen pair of leaves with an edge that joins the trees. The result



o—0——=0
Figure 3: A forest consisting of star-shaped trees. This is the first step in construct-
ing a tree with degree sequence (1,1,1,1,1,1,1,1,1,2,3,3,4,5).

of this merger is clearly still a tree (persuade yourself that the new edge can’t
create a cycle) and so, even after the merger, we still have a forest, though
with one tree less. And as each merger reduces the number of trees in the
forest by one, eventually we must get down to a single tree.

Figure 4: The panels show, left-to-right, the steps required two merge two trees.

To see that this construction works, note first that the process of merging trees
never changes the degree of a non-leaf vertex. Thus since we started out with n — k
vertices having degrees dy1 through d,,, we’ll still have vertices with those degrees
in the final tree. Thus all we need to do is check that this tree has the right number,
k, of leaves.

The original forest of star-shaped graphs has

i d = (i@)—k = 2n—1)—k

j=k+1

leaves, where I have used Eqn. (5.1) and the fact that d; = --- = d;. = 1. Each
merger eliminates two leaves and we do n—k—1 of them (one less than n — k, which
is the number of trees in the forest-of-stars) and so the final tree has

2n—1)—k — 2n—k—1) = (2n—2—-k)—(2n—2k—2)
leaves in f:rrest»of—stars eliminated ;;ing mergers

= 2m—2—k—2n+2k+2
= k,

which is just the right number for the final tree to have the original sequence,
(dy, da, ..., dy), as its degree sequence.



(6). This problem has to do with rooted binary trees. Note that some authors,
including Jungnickel, define a rooted tree as an ordinary graph-theoretic tree (that
is, a connected, acyclic graph) with a distinguished node (which may be an internal
node), but in this problem I intended the term to mean “a tree with a distinguished
leaf node.”

(a)

(b)

Here are three trees, the middle and rightmost of which are isomorphic.

TYY

One can prove this by induction on the number of leaves. The simplest rooted
binary tree has n = 2 leaves and one internal node. That is, it has three
vertices of degree one (the root and two leaves) and one vertex of degree 3:
see Figure bl This graph has four vertices, so the result is established for the

Figure 5: The simplest rooted binary tree.

base case. Now suppose it is true for all rooted binary trees with no more
than n leaf nodes and consider a tree G with n+ 1 leaves. Note that every leaf
node must be connected by its sole edge to an internal node (a node of degree
three). Choose one of the leaves—call this vertex vg—and delete it, along with
its edge. The resulting graph, G’ = G'\vy, is not a rooted binary tree because
the node—call it u—that was formerly connected to vy now has degree 2.

Call u’s remaining neighbours v; and v,. Thus the edge set for G’ contains
(u,v1) and (u,v9). Now make a third graph, G”, by deleting u and its two
edges from G’ and adding a new edge (v, v;) in their place. An example of
the sort of tree surgery we're discussing appears in Figure [6]

G" is again a binary rooted tree, but it has only n leaves, so the inductive
hypothesis applies, and G” has an even number of nodes. But then G does
too, for we deleted exactly two nodes in passing from G to G”.

A careful replay of the logic in the previous answer allows one to conclude that
a binary rooted tree with n leaves has 2n vertices: the n leaves plus (n — 1)
internal nodes and the root.

A binary rooted tree is a special case of a tree (that is, a connected acyclic
graph), so it has one less edge than it has vertices. Thus, in light of the
previous answer, a rooted binary tree with n leaves has 2n — 1 edges.
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Figure 6: Remouving a leaf from a binary tree.

(e) The first thing to do here is to clarify when we should think of two trees as
different. If we number the leaf nodes as shown, then the three trees below
are all different.

TYY

Now imagine that we have a collection of all the distinct trees with n leaves—
say there are W, of them—and imagine trying to construct the collection
of distinct trees with (n + 1) leaves. We can build them by reversing the
construction from part (b) above. To add the (n 4 1)-th leaf node we must
break an edge and insert a new internal vertex in its middle. This new internal
vertex is also connected to the new leaf. The figure below shows three distinct
3-leaf binary rooted trees derived from a labelled version of the one in Figure 5]
by adding the new leaf and accompanying internal node to the various edges
of the 2-leaf tree.

EYY

A little thought shows that we can insert our new pair of vertices (the internal
one and the attached new leaf) on any of the edges of the graph, so each distinct
graph with n leaves gives rise to (2n — 1) distinct graphs having (n+ 1) leaves.
This leads to the recursion
Wy =1
Wi = (2n—1)W,. (6.4)
Thus, for example,
W5 = (2X4—1)W4
= 2x4-1)(2x3-1)W;
= 2x4-1)(2x3-1)2x2—-1)W,
Txbx3x1

—



If you want a tidier form, it’s possible to stare at the recursion (6.4)) for a while
and then conjecture and prove by induction that

~ (2n—-3)!
Wn = 2n=2(p — 2)I’

This grows incredibly quickly with increasing n

Wn

1

3

15

105

945
10395
135135
2027025
10 34459425
11 654729075
12 13749310575
13 316234143225
14 7905853580625

© 00 IO Uk w3

10



