
MATH20902: Discrete Maths, Solutions to Problem Set 3

(1). The desired graph contains a cycle of length nine, so one might as well start
the construction by drawing that and then add extra edges and/or vertices to create
the shorter cycles. A bit of trial-and-error produced the graph illustrated below,
which has ten vertices and at least one cycle with each of the lengths five through
nine.

v1 v9

v10

v2 v3

v4

v5

v6v7

v8

The table below gives one example for each of the desired lengths, but is not ex-
haustive: several examples exist for some of the lengths.

Length Vertex list for cycle
5 {v2, v3, v4, v9, v10, v2}
6 {v4, v5, v6, v7, v8, v9, v4}
7 {v1, v2, v3, v4, v5, v6, v7, v1}
8 {v2, v10, v9, v4, v5, v6, v7, v1, v2}
9 {v2, v3, v4, v5, v6, v7, v8, v9, v10, v2}

(2). The first part of the question requires us to check that “is-strongly-connected-
to” has the three properties of an equivalence relation.

reflexivity True by definition: we say a vertex in a digraph is strongly connected
to itself.

symmetry The defintion of strong connectedness requires walks in both directions—
a to b and b to a—and so the relation clearly symmetric.

transitivity One can establish this by concatenating walks, as is done for undi-
rected graphs in the lecture notes. If this were an exam question, you would
have to write that argument in full.

The strongly connected components of the graph illustrated in the problem are
induced by the sets: {v1, v2, v3}, whose elements all lie on a cycle in the order
specified; {v4}, which is a strongly connected component on its own and {v5, v6, v7},
whose elements also lie on a cycle.

1

(3). The graph below, which has two connected components, provides all the ex-
amples we’ll need.

a

b

c

d e

fh

g

(a) When one adds an edge to a graph there are two possibilities:

• the number of connected components remains unchanged or

• decreases by exactly one.

To see this, first introduce some terms: say that we’re adding the edge (u, v)
to G(V,E). There are two possibilities:

• the endpoints of the edge u and v lie in the same connected component
or

• they lie in the distinct components.

Any change in connectivity must arise from a walk that includes the new
edge (all other walks in G are already reflected in its original connected com-
ponents). And any walk that includes (u, v) must connect a vertex that is
connected to u with one connected to v. Say that the connected components
containing u and v are, respectively, Cu and Cv. If these two components
are the same—if Cu = Cv—then the connectivity of the graph remains un-
changed, but if u and v lie in distinct components then the addition of the
edge (u, v) creates new walks that connect the elements of Cu to those of Cv

and so these components are merged in the new graph. Both possibilities are
illustrated below, where the new edges are shown in red. At left, the new
edge (a, b) joins vertices that were already connected, so the graph still has
two connected components, while at right the new edge (g, d) joins vertices in
distinct components and so the new graph has only a single component.

a a

b b

c

d

c

de e

f fh h

g g

(b) Suppose we remove an edge e = (u, v). Before we remove the edge, u and v
lie in the same connected component and there are two possibilities:

• every walk that connects u to v includes e or

2

• there is a walk connecting u to v that doesn’t include e. In this case the
graph contains a cycle that includes e.

In the first case, removing e breaks the connected component that contained
u andv into tow pieces, one containing u and the other containing v. IN the
second case, the number of components remains the same. The figure above
illustrates both possibilities, where now we imagine removing the red edges.

(4). This problem is about doing arithmetic with asymptotic bounds.

(a) Given that fj(n) = O (gj(n)), we know that there are constants c1 and c′1 such
that, for sufficiently large n,

f1(n) ≤ c1g1(n) and f2(n) ≤ c′1g2(n).

Thus, also for sufficiently large n, we have

f1(n)f2(n) ≤ c1g1(n)f2(n) ≤ c1c
′
1g1(n)g2(n),

which is the same thing as saying that f1(n)f2(n) = O (g1(n)g2(n)) with con-
stant c′′1 = c1c

′
1.

(b) If, for all sufficiently large n, g2(n) > g1(n) then of course

f1(n) + f2(n) ≤ c1g1(n) + c′1g2(n)

≤ c1g2(n) + c′1g2(n)

≤ (c1 + c′1)g2(n)

and (f1(n) + f2(n)) = O(g2(n)). Note that one can combine this with the
result from part (a) to make an inductive proof that the polynomial in Prob-
lem (7) is O(nk).

(5). Let a and b be any two vertices in the graph. Then the connected component
containing a must include a itself, as well as all of a’s neighbours, and so must
contain at least

1 + deg(a) ≥ 1 +
n− 1

2
=

n + 1

2

vertices: the same bound holds for the connected component containing b. But this
means that the two connected components must each contain slightly more than
half the vertices in the graph, and hence must, by the Pigeonhole Principle, overlap
(that is, their vertex sets must have a non-empty intersection). And if they overlap,
they coincide, as connectedness of vertices is an equivalence relation.

3

(6). This problem isn’t so hard, once you think about it carefully, but it took me
a long time the first time I encountered it, perhaps because I had been trained as a
physicist, so had different habits of mind. In principle, there is nothing wrong with
the argument that a symmetric, transitive relation is reflexive, provided that, for
every x, there is some y 6= x such that x ∼ y. Consider, for example, the following
relation on R:

x ∼ y if and only if x× y > 0.

Clearly all positive real numbers are related to each other, and all negative reals are
related to each other, but 0 is not related to anything, not even to itself.

(7). Here we prove that the asymptotic growth rate of a polynomial is determined
by its highest order term. So then, consider

f(n) = akn
k + ak−1n

k−1 + · · ·+ a0. (7.1)

with ak > 0. It is possible to show that f(n) = O(nk) using the two parts of
Problem (4), but I’ll just demonstrate the result directly. The main idea is that, for
large enough n, the highest-order term dominates everything else.

To see this, note that dividing both sides of (7.1) by nk yields

f(n)

nk
= ak +

(ak−1
n

+ · · ·+ a0
nk

)
As we’re interested in large values of n, it’s easy to get an upper bound for the term
in parentheses as follows:

(ak−1
n

+ · · ·+ a0
nk

)
=

1

n

(
ak−1 + · · ·+ a0

nk−1

)
≤ 1

n

k−1∑
j=0

|aj|.

Now define

N1 =

⌈
k−1∑
j=0

|aj|

⌉
. (7.2)

For n ≥ N1 we have that

f(n)

nk
≤ ak +

N1

n
≤ (ak + 1) or f(n) ≤ (ak + 1)nk.

And so, taking c1 = (ak+1) and N1 as in Eqn. (7.2), we’ve proven that f(n) = O(nk).

It’s slightly more fiddly to prove that f(n) = Ω(nk), but the main idea is still
the same: for sufficiently large n, we can be sure that the ratio of the highest-order
term to the lower-order terms is as small as we like. So then, consider the following
bound on the lower-order terms(ak−1

n
+ · · ·+ a0

nk

)
≥ −1

n

k−1∑
j=0

|aj|.

4

If we could show that for sufficiently large n, this quantity was definitely no more
negative than, say, ak/2, we’d be finished, since then the lower-order terms could
never completely cancel off the leading term akn

k. To see how to prove this, divide
through by ak/2:

2

ak

(ak−1
n

+ · · ·+ a0
nk

)
≥ −2

akn

k−1∑
j=0

|aj|

This suggests that if we define N2 by

N2 =

⌈
2

ak

k−1∑
j=0

|aj|

⌉
. (7.3)

we can conclude that for n ≥ N2,

2

ak

(ak−1
n

+ · · ·+ a0
nk

)
≥ −N2

n
≥ −1.

Which is equivalent to (ak−1
n

+ · · ·+ a0
nk

)
≥ −ak

2

and so,

f(n)

nk
= ak +

(ak−1
n

+ · · ·+ a0
nk

)
≥ ak − (ak/2)

≥ ak/2.

Multiplying by nk, then yields

f(n) = akn
k +

(
ak−1n

k−1 + · · ·+ a0
)

≥ (ak/2)nk,

so if we take c2 = ak/2 and N2 as in Eqn. (7.3), the bound above establishes that
f(n) = Ω(nk). Finally, if we combine this with our earlier proof that f(n) = O(nk),
we have proven that f(n) = Θ(nk).

5

