
MATH20902: Discrete Maths, Solutions to Problem Set 2

(1) (Chromatic numbers for famous graphs). Figure 1 shows examples of optimal
colourings (ones that use the minimal number of colours) for each of the families
discussed in the question.
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Figure 1: Examples of optimal colourings for: the path graphs, which have χ(Pn) = 2
for all n; the cycle graphs, which have χ(Cn) = 2 when n is even and χ(Cn) = 3
when n is odd; the cube graphs which have χ(Id) = 2 for all d.

(a) For any n ≥ 2, it’s easy to see that χ(Pn) = 2. The definition of Pn tells us
that the vertex and edge sets are

V = {v1, v2, . . . , vn}
E = {(vj, vj+1) | 1 ≤ j < n} .

Since the edges are all of the form (vj, vj+1), we know that one of the vertices
in the pair will have an even number as its index and the other will have an
odd number. This suggests the following colouring

φP (vj) =

{
1 if j is even
2 if j is odd

, (1.1)

which establishes that χ(Pn) ≤ 2. On the other hand, if n ≥ 2 then Pn

contains at least one edge, hence at least one pair of adjacent vertices and so
χ(Pn) ≥ 2, which establishes that χ(Pn) = 2.
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(b) The cycle graphs Cn have the same vertex sets as the corresponding path
graphs Pn. The also have all the same edges, as well as one extra edge,
(vn, v1). If n is an even number, say, n = 2m with m ≥ 2, then an argument
similar to the one for path graphs above establishes that the chromatic number
is χ(C2m) = 2. But when n is odd, say, n = 2m + 1 with m ≥ 1, the edge
(vn, v1) = (v2m+1, v1) involves two odd-numbered vertices and thus the map
φP in Eqn. 1.1 fails to be a two-colouring.

One can, however, find a three-colouring,

φC(vj) =


1 if j is even
2 if j is odd and j 6= n
3 if j = n.

(1.2)

which establishes that χ(C2m+1) ≤ 3. This inequality, along with the ob-
servation that χ(C2m+1) contains at least one edge (and hence a subgraph
isomorphic to K2), means that χ(C2m+1) ∈ {2, 3} and so if we can prove that
χ(C2m+1) 6= 2, we are finished. We can do that as follows: suppose for con-
tradiction that we have a two-colouring φ̃. Suppose further, without loss of
generality, that φ̃(v1) = 1. Then, as v2 is adjacent to v1, we can conclude that
φ̃(v2) = 2. Similar reasoning tells us that all odd-numbered vertices v2j−1 must
have φ̃(v2j−1) = 1 and all even-numbered vertices v2j must have φ̃(v2j) = 2.
But then, as the number of vertices in the cycle n = 2m+ 1 is odd, we have

φ̃(v1) = φ̃(vn) = 1

which, given that v1 and vn are adjacent, contradicts our assumption that
φ̃ is a two-colouring. Hence χ(C2m+1) > 2 and so, as we’ve already proved
χ(C2m+1) ≤ 3, we’ve now established that χ(C2m+1) = 3.

(c) The cube graphs Id all have chromatic number two. To see why, first note that
every cube graph contains at least one edge, so χ(Id) ≥ 2. Next, recall that
the vertex and edge sets of Id are

V =
{
w |w ∈ {0, 1}d

}
E = {(w,w′) |w and w′ differ in a single position} .

It’s now helpful to introduce the parity function f : {0, 1}d → {0, 1}, which is
given by the rule

f(w) =

{
1 if the string w contains an odd number of 1’s
0 otherwise

Thus, for example,

f(000) = 0, f(001) = 1, f(101) = 0 and f(111) = 1.

Using this we can specify a two-colouring of the cube graph as follows:

φI(w) = 1 + f(w). (1.3)

To see that this really does provide a two colouring we need to establish the
following proposition:
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Proposition. If the pair (w,w′) appears in the edge set of the cube graph then
w and w′ have opposite parity: f(w) 6= f(w′).

The proof turns on the observation that if the strings w and w′ differ in a
single position (which is the condition for an edge to connect the corresponding
vertices) and if w contains k 1’s, then w′ must have k±1 of them. The point is
that the single-position difference between w and w′ is either a change 0→ 1,
which increases the count of 1’s by 1, or a change 1→ 0, which decreases the
count by one. Either way, the parities of w and w′ must be different.

(2) (Avoiding clashes). One can solve this problem by constructing a graph whose
vertices represent animals and whose edges connect animals that should not be
housed together. The chromatic number of this graph is then the minimal number
of enclosures and a corresponding colouring tells us how to house the animals: all
the animals assigned the same colour can go in the same enclosure. A suitable graph
G is

a

b

c

d

e

f

g

h
i

j

which has been coloured using three colours. On the one hand, this establishes that
χ(G) ≤ 3, but on the other hand G contains a cycle of odd length—a, b, d, f , j—so
we also know χ(G) ≥ 3. Thus χ(G) = 3.

(3). The complete graph K4 can’t be a subgraph of the complete bipartite graph
K4,4. To see why, consider the diagram of K4,4 below and note that edges run
between all possible pairs of red and white vertices, but that no edges run red-to-red
or white-to-white. This observation enables us to prove our result by contradiction.
Suppose for contradiction that we can find a subset V ′ consisting of four vertices
from K4,4 and that these, along with a suitable subset of the edges, form a subgraph
isomorphic to K4.

K4K4,4
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As V ′ contains four vertices and the diagram of K4,4 above organises the vertices into
only two groups (the ones from the definition of bipartite: see the video introducing
standard examples of graphs) the Pigeonhole Principle tells us that there must be
two vertices in V ′ that belong to the same group. But then these two cannot be
adjacent in any subgraph of K4,4, as a bipartite graph has no edges running between
vertices in the same group. And this contradicts the claim that V ′ is the vertex set
of a subgraph isomorphic to K4, for in K4 every vertex is adjacent to every other.

(4). P4 isn’t an induced subgraph of K4,4, though C4 is. Let’s say that the vertex
set of P4 is {v1, v2, v3, v4}, with edges (vj, vj+1) for 1 ≤ j ≤ 3. Now suppose—
aiming at a proof by contradiction—that we have a bijection α mapping these four
vertices to a subset of those in K4,4. Then α(v1) and α(v3) would have to lie in one
of the bipartite graph’s two subsets (see the previous answer for an illustration of
these subsets) while α(v2) and α(v4) would lie in the other subset. But then the
subgraph of K4,4 induced by the vertices {α(v1), α(v2), α(v3), α(v4)} would include
the following four edges

{(α(v1), α(v2)), (α(v2), α(v3)), (α(v3), α(v4)), (α(v4), α(v1))}

while P4 has only three edges. Thus the induced subgraph cannot be isomorphic to
P4, which contradicts our initial assumption.

(5). To do these problems, it’s enough to exhibit a cycle of the desired length that
is contained in the corresponding cube graph.

(a) The vertices of I2 are labelled by ordered pairs of 1’s and 0’s and all possible
labels occur. Two vertices are adjacent if their labels differ at only a single
position. The following cycle is clearly isomorphic to C4 as, (i) it’s a cycle and
(ii) it contains 4 distinct vertices.

(00, 10, 11, 01, 00).

In fact, I2 is isomorphic to C4.

(b) Here a suitable cycle is

(000, 100, 110, 010, 011, 111, 101, 001, 000).

(c) The cycle here is long, but simply related to the one from part (b):

(0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010, 0011,

1011, 1111, 0111, 0101, 1101, 1001, 0001, 0000).
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(6). If you followed the hint in the question, you should have ended up with diagrams
like the two below, which are alternative representations of the graphs in the original
illustration.
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v7 v8
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It is clear that the two graphs are not isomorphic and one way to establish this
rigorously is to focus on the vertices with degree three. In the graph at left these
are u2, u4 and u7 and two of them, u4 and u7 are adjacent. In the graph at right
there are also three vertices with degree three—v3, v7 and v8—and two of them, v3
and v8, are adjacent. But v3 and v8 are also both adjacent to v6 and there is no
corresponding shared neighbour for u4 and u7 on the left.

One can use these observations to prove that the graphs aren’t isomorphic by
contradiction. Suppose there is a suitable bijection α from the vertex set {u1, . . . , u8}
of the graph on the left to the vertex set {v1, . . . , v8} on the right. Then α would have
to map the subset {u4, u7} to the subset {v3, v8} as these are the adjacent vertices
of degree three. But if this bijection really established a graph isomorphism, the
existence of the edges (v3, v6) and (v8, v6) on the right would imply the existence of
the edges (α−1(v3), α

−1(v6)) and (α−1(v8), α
−1(v6)) on the left and that would imply

the existence of a vertex α−1(v6) that is adjacent to both u4 and u7. No such vertex
exists, which contradicts the assumption that α establishes a graph isomorphism
and so no such α can exist.

The attentive reader will note that the argument above uses, implicitly, the
following proposition, which appeared in lecture:

Proposition. If G1(V1, E1) and G2(V2, E2) are isomorphic and α : V1 → V2 is the
bijection that establishes the isomorphism, then deg(v) = deg(α(v)) for every v ∈ V1
and deg(u) = deg(α−1(u)) for every u ∈ V2.

(7). The basic strategy here is to use the Pigeonhole Principle: we’ll show that
there are only (n − 1) possible values of deg(v) and, as there are n vertices, some
value must be shared by at least two vertices.

Now, if G(V,E) is a graph with |V | = n vertices then we know that

0 ≤ deg(v) ≤ (n− 1) for all v ∈ V .

That is, a vertex can have a minimum of zero neighbours and a maximum of (n−1).
This seems to suggest that there are n possible values of deg(v), which would spoil
our pigeonhole argument. But a moment’s thought shows that the maximal and
minimal degrees can’t occur in the same graph. If some vertex has degree zero, then
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all the others have degree at most (n− 2). Alternatively, if some vertex has degree
(n−1) then it must be adjacent to all the others and so they all have degree at least
one.

Thus, exactly one of the following three things happens:

• deg(v) = 0 for two or more vertices. In this case the result we seek is clearly
true: the entry 0 is repeated in the degree sequence.

• deg(v) = 0 for exactly one vertex and 1 ≤ deg(u) ≤ (n− 2) for all the others.
But then there are (n − 1) vertices with non-zero degree and only (n − 2)
possible values for their degrees, so some non-zero value must be repeated in
the degree sequence.

• deg(v) > 0 for all v ∈ V . In this case we have 1 ≤ deg(v) ≤ (n − 1) for all n
vertices and so, as above, some non-zero value must be repeated in the degree
sequence.

(8) (Colouring non-adjacent vertices).
The question asks us to prove the following proposition or find a counterexample.

Proposition. If G(V,E) is a graph and k = χ(G) is its chromatic number then, for
any two two non-adjacent vertices u, v ∈ V , there exists some k-colouring φ such
that φ(u) = φ(v).

The proposition is false, as one can show by considering either of the two graphs
below. The clearest of the two, P4 at left, was suggested by Yu Tian, a student in
2017’s version of the course, while the graph H at right is an example I made up.

u w

x y

v
v1 v3

v4v2

P4 H

We saw in Problem (1) that P4 has χ(P4) = 2 and that any optimal colouring
φ must assign one colour to vertices vj with j odd and the other colour to vertices
with j even. Thus although v1 and v4 are not adjacent, φ(v1) 6= φ(v4) in any optimal
colouring. The argument for H is similar, though a bit more involved.

The colouring illustrated above establishes that χ(H) ≤ 3. Furthermore, the
subgraph induced by the vertices w, x and y is isomorphic to K3 and so we know
χ(H) ≥ 3 as well and thus χ(H) = 3. Any 3-colouring of H must assign distinct
colours to the vertices u, w and x, as they are all adjacent to each other. Similar
reasoning says that w, x and y must all receive distinct colours. But this means
that any 3-colouring φ must have

φ(u) = φ(y).

And then, as v and y are adjacent, they must receive distinct colours. Thus it can
never be true that φ(u) = φ(v), which provides a second counterexample to the the
proposition.
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(9) (Bounds on χ(G)). This problem is about whether one can get a bound on the
chromatic number of a graph using either the the maximal degree

∆(G) = max
v∈V

deg(v),

or the average degree

avgdeg(G) =

∑
v∈V deg(v)

|V |
.

(a) It is true that χ(G) ≤ ∆(G) + 1. To see this, note that the greedy colouring
algorithm will certainly be able to construct a ∆(G) + 1 colouring. For when
we come to choose a colour for some v ∈ V it will have, at most, ∆(G)
neighbours and so, with ∆(G) + 1 colours available, there will always be an
unused one that we can assign to φ(v). And the existence of a (∆(G) + 1)-
colouring implies that χ(G) ≤ ∆(G) + 1. This bound is sharp, as every vertex
in the complete graph Kn has degree (n− 1), so ∆(Kn) = (n− 1). But then
χ(Kn) = n = ∆(Kn) + 1.

Figure 2: A counterexample to the claim that χ(G) ≤ avgdeg(G) + 1. This graph,
which consists of a subgraph isomorphic to K4 (at left) and a “tail” of 4 extra
vertices, has χ(G) = 4, but avgdeg(G) = 5/2.

(b) The average degree does not provide a bound on the chromatic number, as is
demonstrated by the graph in Figure 2. It has χ(G) = 4 because it contains
a subgraph isomorphic to K4, but has degree sequence (1, 2, 2, 2, 3, 3, 3, 4) and
hence average degree

avgdeg(G) =
1 + 3× 2 + 3× 3 + 4

8
=

20

8
=

5

2
,

so

avgdeg(G) + 1 =
7

2
< χ(G).

In fact, you can make similar graphs that have avgdeg(G) as close to 2 as you
like. The idea is to extend the tail so that it includes k vertices. Then

avgdeg(G) =
1 + (k − 1)× 2 + 3× 3 + 4

4 + k
=

12 + 2k

4 + k
.

7



(10). It is possible to construct a proof by induction along the lines of the examples
in the answer to Problem (5). The key idea is that Id+1 is essentially two copies of
Id, glued together. The figure below shows how this works for I2 and I3 and suggests
a way to use a cycle in Id to construct a cycle in Id+1.
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Expressing the idea in words, we construct a cycle in I3 by splitting its vertex labels
into two groups: those ending in 0 and those ending in 1. Each group has a natural,
one-to-one correspondence with the vertex labels in I2 (just ignore the final digit
in the labels from I3). To get the desired cycle in I3 we traverse the first group
of vertices in the order suggested by the cycle from I2 and then jump over to the
second group and traverse that in the opposite order.

Now we’ll develop a recursive algorithm that generates a sequence of vertex
labels for a cycle in Id+1, given one for Id, but before we can do this we need a little
notation. Let’s say that wj,d, where 0 ≤ j ≤ 2d, is the label of the j-th vertex in the
cycle found in Id. From the answer to the previous question, we could say that

w0,2 = 00

w1,2 = 01

w2,2 = 11

w3,2 = 10

w4,2 = 00

As we want to build up the vertex labels recursively, we’ll also need a notation to
indicate concatenation of letters. We’ll write wj,k⊕1 to mean “append a 1 on to the
end of the string wj,k”. Similarly, wj,k ⊕ 0 means “append a 0”. Thus, for example,

w1,2 ⊕ 0 = 01⊕ 0 = 010

w1,2 ⊕ 1 = 01⊕ 1 = 011

Then define the rest recursively by

wj,d+1 =


wj,d ⊕ 0 If 0 ≤ j < 2d

w2d+1−j−1,d ⊕ 1 If 2d ≤ j < 2d+1

w0,d ⊕ 0 If j = 2d+1
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