
MATH20902: Discrete Maths, Solutions to Problem Set 1

(1). The upper panel in the figure below shows the maze and the network of paths
within it while the lower panel shows the network of paths as a graph with named
vertices.
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Once one has the bottom panel of the figure above, it’s easy to abstract it further,
to a form in which the solution is obvious:
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Notice that there is not a unique path from the start vertex to the finish. The cycle
that includes vertices g, h and n encloses a segment of the maze’s walls that are, in
a natural sense, disconnected from the rest.

(2). The digraph

21

has adjacency matrix

A =

[
0 1
1 0

]
.
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(3). The graph in question is below.
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(4). Given the adjacency matrix of an undirected graph, one can compute the
degrees of its vertices via

deg(vj) =
n∑

k=1

Ajk =
n∑

k=1

Akj.

The degrees of the vertices in H are thus

Vertex vj v1 v2 v3 v4 v5 v6 v7
deg(vj) 5 4 4 4 4 4 5

(5). A suitable set with four elements is {1, 2, 3, 4} and we can label the vertices
of the graph T4 with subsets of the form {j, k}. The vertex set is then

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

and the adjacency matrix is

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
{1, 2} 0 1 1 1 1 0
{1, 3} 1 0 1 1 0 1
{1, 4} 1 1 0 0 1 1
{2, 3} 1 1 0 0 1 1
{2, 4} 1 0 1 1 0 1
{3, 4} 0 1 1 1 1 0

Similar considerations for T5 lead to the adjacency matrix

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}
{1, 2} 0 1 1 1 1 1 1 0 0 0
{1, 3} 1 0 1 1 1 0 0 1 1 0
{1, 4} 1 1 0 1 0 1 0 1 0 1
{1, 5} 1 1 1 0 0 0 1 0 1 1
{2, 3} 1 1 0 0 0 1 1 1 1 0
{2, 4} 1 0 1 0 1 0 1 1 0 1
{2, 5} 1 0 0 1 1 1 0 0 1 1
{3, 4} 0 1 1 0 1 1 0 0 1 1
{3, 5} 0 1 0 1 1 0 1 1 0 1
{4, 5} 0 0 1 1 0 1 1 1 1 0

and to the figure below, which shows T4 on the left and T5 on the right.
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(a) The number of vertices in TN is the same as the number of ways to choose two
distinct elements from a set of N , which is(

N
2

)
=

N !

2! (N − 2)!
=

N(N − 1)

2
.

(b) Suppose the set and vertex labels are like those used above and consider the
vertex {j, k}. There are (N − 2) elements in the original set (that is, numbers
from {1, . . . , N}) that are different from both j and k and each such number
gives rise to a pair of vertices adjacent to {j, k}. That is, for each i such that
i 6= j and i 6= k, we have two distinct adjacent vertices: one corresponding
to the subset {i, j} and another corresponding to {i, k}. Thus there are
2(N − 2) = 2N − 4 vertices adjacent to {j, k} or, equivalently deg({j, k}) =
2N − 4.

(c) If two vertices are adjacent, their corresponding two-element subsets of {1, . . . , N}
share a member. Let’s say that x corresponds to the subset {j1, k} while y
corresponds to {j2, k}, with j1 6= j2. Now consider those elements of the
original set that differ from all three of j1, j2 and k and define

U = {1, . . . , N}\{j1, j2, k}.

There are (N−3) elements in U and each gives rise to a vertex that is adjacent
to both x and y: the corresponding subsets are of the form {i, k}. In addition,
the vertex corresponding to {j1, j2} is adjacent to both x and y, giving a total
of (N − 3) + 1 = N − 2 common neighbours.

(d) If two vertices x and y are not adjacent, then their corresponding two-element
subsets have no elements in common. Let’s say that x corresponds to {j1, k1}
while y corresponds to {j2, k2}, where all four of the numbers j1, j2, k1 and k2
are distinct. The only way a vertex can be adjacent to both x and y is if its
two-element subset shares a member with each of the subsets corresponding
to x and y and there are clearly only four ways this can happen:

{j1, j2}, {j1, k2}, {k1, j2} and {k1, k2}.
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