MATH20902: Discrete Maths, Solutions to Problem Set 1

(1). The upper panel in the figure below shows the maze and the network of paths within it while the lower panel shows the network of paths as a graph with named vertices.

Once one has the bottom panel of the figure above, it's easy to abstract it further, to a form in which the solution is obvious:

Notice that there is not a unique path from the start vertex to the finish. The cycle that includes vertices g, h and n encloses a segment of the maze's walls that are, in a natural sense, disconnected from the rest.

(2). The digraph

has adjacency matrix

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

(3). The graph in question is below.

(4). Given the adjacency matrix of an undirected graph, one can compute the degrees of its vertices via

$$\deg(v_j) = \sum_{k=1}^{n} A_{jk} = \sum_{k=1}^{n} A_{kj}.$$

The degrees of the vertices in H are thus

Vertex v_j	v_1	v_2	v_3	v_4	v_5	v_6	v_7
$\deg(v_j)$	5	4	4	4	4	4	5

(5). A suitable set with four elements is $\{1, 2, 3, 4\}$ and we can label the vertices of the graph T_4 with subsets of the form $\{j, k\}$. The vertex set is then

$$\{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$$

and the adjacency matrix is

	$ \{1,2\}$	$\{1, 3\}$	$\{1, 4\}$	$\{2, 3\}$	$\{2, 4\}$	$\{3, 4\}$
$\{1, 2\}$	0	1	1	1	1	0
$\{1, 3\}$	1	0	1	1	0	1
$\{1, 4\}$	1	1	0	0	1	1
$\{2,3\}$	1	1	0	0	1	1
$\{2, 4\}$	1	0	1	1	0	1
$\{3, 4\}$	0	1	1	1	1	0

Similar considerations for ${\cal T}_5$ lead to the adjacency matrix

	$\{1,2\}$	$\{1, 3\}$	$\{1, 4\}$	$\{1, 5\}$	$\{2, 3\}$	$\{2, 4\}$	$\{2, 5\}$	$\{3, 4\}$	$\{3, 5\}$	$\{4, 5\}$
$\{1,2\}$	0	1	1	1	1	1	1	0	0	0
$\{1, 3\}$	1	0	1	1	1	0	0	1	1	0
$\{1, 4\}$	1	1	0	1	0	1	0	1	0	1
$\{1, 5\}$	1	1	1	0	0	0	1	0	1	1
$\{2,3\}$	1	1	0	0	0	1	1	1	1	0
$\{2, 4\}$	1	0	1	0	1	0	1	1	0	1
$\{2, 5\}$	1	0	0	1	1	1	0	0	1	1
$\{3, 4\}$	0	1	1	0	1	1	0	0	1	1
$\{3, 5\}$	0	1	0	1	1	0	1	1	0	1
$\{4,5\}$	0	0	1	1	0	1	1	1	1	0

and to the figure below, which shows T_4 on the left and T_5 on the right.

(a) The number of vertices in T_N is the same as the number of ways to choose two distinct elements from a set of N, which is

$$\binom{N}{2} = \frac{N!}{2!(N-2)!} = \frac{N(N-1)}{2!}$$

- (b) Suppose the set and vertex labels are like those used above and consider the vertex $\{j, k\}$. There are (N-2) elements in the original set (that is, numbers from $\{1, \ldots, N\}$) that are different from both j and k and each such number gives rise to a pair of vertices adjacent to $\{j, k\}$. That is, for each i such that $i \neq j$ and $i \neq k$, we have two distinct adjacent vertices: one corresponding to the subset $\{i, j\}$ and another corresponding to $\{i, k\}$. Thus there are 2(N-2) = 2N 4 vertices adjacent to $\{j, k\}$ or, equivalently $deg(\{j, k\}) = 2N 4$.
- (c) If two vertices are adjacent, their corresponding two-element subsets of $\{1, \ldots, N\}$ share a member. Let's say that x corresponds to the subset $\{j_1, k\}$ while y corresponds to $\{j_2, k\}$, with $j_1 \neq j_2$. Now consider those elements of the original set that differ from all three of j_1, j_2 and k and define

$$U = \{1, \ldots, N\} \setminus \{j_1, j_2, k\}.$$

There are (N-3) elements in U and each gives rise to a vertex that is adjacent to both x and y: the corresponding subsets are of the form $\{i, k\}$. In addition, the vertex corresponding to $\{j_1, j_2\}$ is adjacent to both x and y, giving a total of (N-3) + 1 = N - 2 common neighbours.

(d) If two vertices x and y are not adjacent, then their corresponding two-element subsets have no elements in common. Let's say that x corresponds to $\{j_1, k_1\}$ while y corresponds to $\{j_2, k_2\}$, where all four of the numbers j_1, j_2, k_1 and k_2 are distinct. The only way a vertex can be adjacent to both x and y is if its two-element subset shares a member with each of the subsets corresponding to x and y and there are clearly only four ways this can happen:

$$\{j_1, j_2\}, \{j_1, k_2\}, \{k_1, j_2\} \text{ and } \{k_1, k_2\}.$$