MATH20902: Discrete Maths, Solutions to Problem Set 1

(1). The upper panel in the figure below shows the maze and the network of paths within it while the lower panel shows the network of paths as a graph with named vertices.

Once one has the bottom panel of the figure above, it's easy to abstract it further, to a form in which the solution is obvious:

Notice that there is not a unique path from the start vertex to the finish. The cycle that includes vertices g, h and n encloses a segment of the maze's walls that are, in a natural sense, disconnected from the rest.
(2). The digraph

has adjacency matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(3). The graph in question is below.

(4). Given the adjacency matrix of an undirected graph, one can compute the degrees of its vertices via

$$
\operatorname{deg}\left(v_{j}\right)=\sum_{k=1}^{n} A_{j k}=\sum_{k=1}^{n} A_{k j} .
$$

The degrees of the vertices in H are thus

$$
\begin{array}{l|ccccccc}
\text { Vertex } v_{j} & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\
\operatorname{deg}\left(v_{j}\right) & 5 & 4 & 4 & 4 & 4 & 4 & 5
\end{array}
$$

(5). A suitable set with four elements is $\{1,2,3,4\}$ and we can label the vertices of the graph T_{4} with subsets of the form $\{j, k\}$. The vertex set is then

$$
\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

and the adjacency matrix is

	$\{1,2\}$	$\{1,3\}$	$\{1,4\}$	$\{2,3\}$	$\{2,4\}$	$\{3,4\}$
$\{1,2\}$	0	1	1	1	1	0
$\{1,3\}$	1	0	1	1	0	1
$\{1,4\}$	1	1	0	0	1	1
$\{2,3\}$	1	1	0	0	1	1
$\{2,4\}$	1	0	1	1	0	1
$\{3,4\}$	0	1	1	1	1	0

Similar considerations for T_{5} lead to the adjacency matrix

	$\{1,2\}$	$\{1,3\}$	$\{1,4\}$	$\{1,5\}$	$\{2,3\}$	$\{2,4\}$	$\{2,5\}$	$\{3,4\}$	$\{3,5\}$	$\{4,5\}$
$\{1,2\}$	0	1	1	1	1	1	1	0	0	0
$\{1,3\}$	1	0	1	1	1	0	0	1	1	0
$\{1,4\}$	1	1	0	1	0	1	0	1	0	1
$\{1,5\}$	1	1	1	0	0	0	1	0	1	1
$\{2,3\}$	1	1	0	0	0	1	1	1	1	0
$\{2,4\}$	1	0	1	0	1	0	1	1	0	1
$\{2,5\}$	1	0	0	1	1	1	0	0	1	1
$\{3,4\}$	0	1	1	0	1	1	0	0	1	1
$\{3,5\}$	0	1	0	1	1	0	1	1	0	1
$\{4,5\}$	0	0	1	1	0	1	1	1	1	0

and to the figure below, which shows T_{4} on the left and T_{5} on the right.

(a) The number of vertices in T_{N} is the same as the number of ways to choose two distinct elements from a set of N, which is

$$
\binom{N}{2}=\frac{N!}{2!(N-2)!}=\frac{N(N-1)}{2} .
$$

(b) Suppose the set and vertex labels are like those used above and consider the vertex $\{j, k\}$. There are $(N-2)$ elements in the original set (that is, numbers from $\{1, \ldots, N\}$) that are different from both j and k and each such number gives rise to a pair of vertices adjacent to $\{j, k\}$. That is, for each i such that $i \neq j$ and $i \neq k$, we have two distinct adjacent vertices: one corresponding to the subset $\{i, j\}$ and another corresponding to $\{i, k\}$. Thus there are $2(N-2)=2 N-4$ vertices adjacent to $\{j, k\}$ or, equivalently $\operatorname{deg}(\{j, k\})=$ $2 N-4$.
(c) If two vertices are adjacent, their corresponding two-element subsets of $\{1, \ldots, N\}$ share a member. Let's say that x corresponds to the subset $\left\{j_{1}, k\right\}$ while y corresponds to $\left\{j_{2}, k\right\}$, with $j_{1} \neq j_{2}$. Now consider those elements of the original set that differ from all three of j_{1}, j_{2} and k and define

$$
U=\{1, \ldots, N\} \backslash\left\{j_{1}, j_{2}, k\right\}
$$

There are $(N-3)$ elements in U and each gives rise to a vertex that is adjacent to both x and y : the corresponding subsets are of the form $\{i, k\}$. In addition, the vertex corresponding to $\left\{j_{1}, j_{2}\right\}$ is adjacent to both x and y, giving a total of $(N-3)+1=N-2$ common neighbours.
(d) If two vertices x and y are not adjacent, then their corresponding two-element subsets have no elements in common. Let's say that x corresponds to $\left\{j_{1}, k_{1}\right\}$ while y corresponds to $\left\{j_{2}, k_{2}\right\}$, where all four of the numbers j_{1}, j_{2}, k_{1} and k_{2} are distinct. The only way a vertex can be adjacent to both x and y is if its two-element subset shares a member with each of the subsets corresponding to x and y and there are clearly only four ways this can happen:

$$
\left\{j_{1}, j_{2}\right\},\left\{j_{1}, k_{2}\right\},\left\{k_{1}, j_{2}\right\} \text { and }\left\{k_{1}, k_{2}\right\} .
$$

