Task	Duration (days)	Prerequisites
Α	5	None
В	9	А
С	10	A & F
D	7	B & C
Е	2	None
F	4	E
G	12	E
Н	9	F & G
I	6	D & H

- (a) Draw a directed graph representing the project, making sure to include a starting vertex S that has no predecessors and a terminal vertex Z that has no successors.
- (b) List all paths from S to Z in the digraph from part (a) and, for each, find its total weight.
- (c) By finding a critical path through the digraph from part (a), find the shortest amount of time in which the project can be completed.
- (d) For each task, find both the earliest time (measured from the start of the project) at which it *could* start and the latest time by which it *must* start if the project is to be completed in minimal time.

This slide is available on Blackboard and at https://bit.ly/32oV3aC