Consider the successive powers of the adjacency matrix A of a directed graph $G(V, E)$. That is, consider the sequence of matrices A^{k} defined by $A^{k}=A A^{k-1}$ and $A^{1}=A$.

Which, if any, of the following statements are true?
(a) If, for some positive integer k_{0}, the matrix $A^{k_{0}}$ has strictly positive entries, then G is strongly connected.
(b) If, for some positive integer k_{0}, the matrix $A^{k_{0}}$ has strictly positive entries, then A^{k} has strictly positive entries for all $k \geq k_{0}$.
(c) If G is strongly connected, then there exists a positive integer $k_{0}>0$ such that $A^{k_{0}}$ has strictly positive entries.

These slides are available on Blackboard and at https://bit.1y/2QexzCq

What is the value of $A_{3,4}^{31}$ when A is the adjacency matrix of the graph below? Explain carefully how you obtain your answer.

These slides are available on Blackboard and at https://bit.1y/2QexzCq

Distance and Tropical Matrix Powers

For each of the graphs above:
(a) By inspection, construct a matrix D whose entries are

$$
D_{j, k}=\left\{\begin{array}{cl}
d\left(v_{j}, v_{k}\right) & \text { if } v_{k} \text { is reachable from } v_{j} \\
\infty & \text { otherwise }
\end{array}\right.
$$

Here $d\left(v_{j}, v_{k}\right)$ is the weight of a minimal-weight walk from v_{j} to v_{k}.
(b) Construct the weight matrix W whose entires are

$$
W_{j, k}=\left\{\begin{array}{cl}
0 & \text { if } j=k \\
w\left(v_{j}, v_{k}\right) & \text { if } j \neq k \text { and }\left(v_{j}, v_{k}\right) \in E \\
\infty & \text { otherwise }
\end{array}\right.
$$

(c) Finally, compute the tropical matrix power $W^{\otimes(n-1)}$ where $n=|V|$ is the number of vertices in the graph. The results should agree with your answers to part (a).
These slides are available on Blackboard and at https://bit.ly/2QexzCq

