

(a) How many spregs with distinguished vertex v_6 appear the graph above? Draw them all.

(b) For each one, list the cycles, if any, that it contains.

These slides are available on Blackboard and at https://bit.ly/3tefnXA

- (a) How many spregs with distinguished vertex v_1 appear the graph above? Draw them all.
- (b) How many spanning arborescences rooted at v₁ are contained in the graph above? Answer this in two ways: by counting graphs spregs drawn in the previous step and by using the Tutte's Matrix-Tree Theorem.
- (c) How many cycles does the graph above contain? For each, determine how many spregs with distinguished vertex v_1 contain them.

These slides are available on Blackboard and at https://bit.ly/3tefnXA

Similar to a quiz problem for Video 6.4

Construct the Laplacian L of the graph above, then fill in the table below, which is about terms in det(\mathcal{L}), where $\mathcal{L} = \hat{L}_5$ is the matrix formed by deleting the 5th row and column of L.

	Term in $\det(\mathcal{L})$		
σ	$\operatorname{sgn}(\sigma)\prod_{j=1}^4 \mathcal{L}_{j,\sigma(j)}$	Value of term	Spregs counted
id	$1 \times \mathcal{L}_{1,1} \mathcal{L}_{2,2} \mathcal{L}_{3,3} \mathcal{L}_{4,4}$	16	all spregs
	$-1 \times \mathcal{L}_{1,2} \mathcal{L}_{2,1} \mathcal{L}_{3,3} \mathcal{L}_{4,4}$	- 4	
(3, 4)			
(1, 2, 3)			

 $1 \times \mathcal{L}_{1,2} \mathcal{L}_{2,1} \mathcal{L}_{3,4} \mathcal{L}_{4,3}$

These slides are available on Blackboard and at https://bit.ly/3tefnXA

Discrete Maths (MATH20902