Spregs and cycles

(a) How many spregs with distinguished vertex v_{6} appear the graph above? Draw them all.
(b) For each one, list the cycles, if any, that it contains.

These slides are available on Blackboard and at https://bit.ly/3tefnXA

(a) How many spregs with distinguished vertex v_{1} appear the graph above? Draw them all.
(b) How many spanning arborescences rooted at v_{1} are contained in the graph above? Answer this in two ways: by counting graphs spregs drawn in the previous step and by using the Tutte's Matrix-Tree Theorem.
(c) How many cycles does the graph above contain? For each, determine how many spregs with distinguished vertex v_{1} contain them.

These slides are available on Blackboard and at https://bit.ly/3tefnXA

Similar to a quiz problem for Video 6.4

Construct the Laplacian L of the graph above, then fill in the table below, which is about terms in $\operatorname{det}(\mathcal{L})$, where $\mathcal{L}=\hat{L}_{5}$ is the matrix formed by deleting the 5 th row and column of L.

Term in $\operatorname{det}(\mathcal{L})$

σ	$\operatorname{sgn}(\sigma) \prod_{j=1}^{4} \mathcal{L}_{j, \sigma(j)}$	Value of term	Spregs counted
id	$1 \times \mathcal{L}_{1,1} \mathcal{L}_{2,2} \mathcal{L}_{3,3} \mathcal{L}_{4,4}$	16	all spregs
	$-1 \times \mathcal{L}_{1,2} \mathcal{L}_{2,1} \mathcal{L}_{3,3} \mathcal{L}_{4,4}$	-4	

$(3,4)$

$$
(1,2,3)
$$

$$
1 \times \mathcal{L}_{1,2} \mathcal{L}_{2,1} \mathcal{L}_{3,4} \mathcal{L}_{4,3}
$$

These slides are available on Blackboard and at https://bit.ly/3tefnXA

