A saturated hydrocarbon is a molecule with chemical formula $\mathrm{C}_{m} \mathrm{H}_{n}$ (that is, it contains m atoms of carbon and n of hydrogen) in which, as in the examples below, every carbon atom C has four bonds; every hydrogen atom H has one bond; there are no double, triple or quadruple bonds and no sequence of bonds forms a cycle.

Prove the following results:

- If there is a saturated hydrocarbon with formula $\mathrm{C}_{m} \mathrm{H}_{n}$, then $n=2 m+2$. Hint: think about the Handshaking Lemma
- If m is a positive integer and $n=2 m+2$, then there exists an example of a saturated hydrocarbon with formula $\mathrm{C}_{m} \mathrm{H}_{n}$.

These slides are available at https://bit.ly/204hhLb

Prove the following statement or find a counterexample:

- If $G(V, E)$ is a tree with $|V| \geq 2$, then $\chi(G)=2$.

These slides are available at https://bit.ly/204hhLb

Degrees in trees

Draw four non-isomorphic trees on 8 vertices and, for each one, do the following:

- find a 2-colouring ϕ;
- define two subsets of the vertex set, $V_{1} \subseteq V$ and $V_{2} \subseteq V$, by

$$
V_{j}=\{v \in V \mid \phi(v)=j\}
$$

- Compute

$$
\sum_{v \in V_{1}} \operatorname{deg}(v) \quad \text { and } \quad \sum_{u \in V_{2}} \operatorname{deg}(u)
$$

Conjecture and prove a lemma based on your observations.

These slides are available at https://bit.ly/204hhLb

Is it possible for a graph $G(V, E)$ to have $|V|=17,|E|=73$ and $\chi(G)=2$? If so, give an example, but if not, explain rigorously why it is impossible.

These slides are available at https://bit.ly/204hhLb

