The rate of growth of a function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$is often characterised in terms of some simpler function $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$in the following ways:

- $f(n)=O(g(n))$ if $\exists c_{1}>0$ such that, for all sufficiently large $n, f(n) \leq c_{1} g(n)$;
- $f(n)=\Omega(g(n))$ if $\exists c_{2}>0$ such that, for all sufficiently large $n, f(n) \geq c_{2} g(n)$;
- $f(n)=\Theta(g(n))$ if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Prove the following
(a) if $f_{a}(n)=n+\ln (n)$ then $f_{a}(n)=\Theta(n)$.
(b) if $f_{b}(n)=\lfloor n\rfloor+\lceil n\rceil$ then $f_{b}(n)=\Theta(n)$.

These slides are available on Blackboard and at https://bit.ly/37CkyYY
(a) Suppose that $G(V, E)$ is a graph with $|V|=11$ and that $\operatorname{deg}(v) \geq 5$ for all $v \in V$. Prove that G must be connected. Hint: what can you say about the size of the connected components?
(b) Suppose that $G(V, E)$ is a graph with $|V|=15$ and that $\operatorname{deg} v \geq 3$ for all $v \in V$. What is the largest number of connected components that G could have? Draw an example of such a graph.

These slides are available on Blackboard and at https://bit.ly/37CkyYY

Connectivity and Complements

Recall from the review session in Week 1 (or learn for the first time) that the complement of a graph $G(V, E)$ is the graph $\bar{G}\left(V, E^{\prime}\right)$ whose edge set contains every edge (except loops) that isn't in E. That is

$$
E^{\prime}=\{(u, v) \mid u, v \in V, u \neq v \text { and }(u, v) \notin E\}
$$

Prove that if $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ are each other's complements, then one of them must be connected. Is it possible for both to be connected?

These slides are available on Blackboard and at https://bit.ly/37CkyYY

