Let P_{1} and P_{2} be two paths of maximum length in a connected graph $G(V, E)$. Prove that P_{1} and P_{2} have a common vertex.

These slides are available at https://bit.ly/3yN5N4d

[^0]Let $T(V, E)$ be a tree with $|V| \geq 2$. Prove that T is bipartite.

These slides are available at https://bit.ly/3yN5N4d

Prove that if every edge of a connected graph $G(V, E)$ lies on an odd number of cycles, then G is Eulerian.

Hint: I found following result, from Video 7.1, useful:

Theorem

Let G be a connected multigraph. Then the following statements are equivalent:
(a) G is Eulerian.
(b) Each vertex of G has even degree.
(c) The edge set of G can be partitioned into cycles.

These slides are available at https://bit.ly/3yN5N4d

[^0]: ${ }^{1}$ This exercise comes from J. M. Harris, J. L. Hirst, and M. J. Mossinghoff (2008), Combinatorics and Graph Theory, Undergraduate Texts in Mathematics, Springer New York, 2nd edition.

