Definition

A subdivision of a graph $G(V, E)$ is a graph $H\left(V^{\prime}, E^{\prime}\right)$ formed by (perhaps repeatedly) removing an edge $e=(a, b) \in E$ from G and replacing it with a path

$$
\left\{\left(a, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k}, b\right)\right\}
$$

containing of some number $k \geq 0$ of new vertices $\left\{v_{1}, \ldots, v_{k}\right\}$, each of which has degree 2 .

A book ${ }^{1}$ that I often recommend offers the following exercises:
(a) Find an example of a connected graph with degree sequence

$$
(2, \ldots, 2,3,3,3,3,3,3)
$$

that is not a subdivision of $K_{3,3}$.
(b) Find an example of a connected graph with degree sequence

$$
(2, \ldots, 2,4,4,4,4,4)
$$

that is not a subdivision of K_{5}.

[^0]In last week's tutorial we used the bound $m \leq g(n-2) /(g-2)$ to prove that the cube graph I_{4} is nonplanar. Kuratowski's theorem then tells us that I_{4} must contain a subgraph homeomorphic to $K_{3,3}$ or K_{5} (or perhaps both). Find such subgraphs.

These slides are available on Blackboard and at https://bit.ly/3whXXML

Answer the following questions to prove that the graph at right is non-planar using Kuratowski's Theorem:
(a) Could this graph contain a subgraph homeomorphic to K_{5} ?
(b) Could this graph contain a subgraph homeomorphic to $K_{3,3}$?
(c) How many edges and vertices would one have to delete?

These slides are available on Blackboard and at https://bit.ly/3whXXML

Applying Kuratowski's theorem (again)

Answer the following questions to prove that the graph at right is non-planar using Kuratowski's Theorem:
(a) Does this graph contain a subgraph homeomorphic to $K_{3,3}$?
(b) Does this graph contain a subgraph homeomorphic to K_{5} ?

These slides are available on Blackboard and at https://bit.ly/3whXXML

[^0]: ${ }^{1}$ D. A. Marcus (2008), Graph Theory: A Problem Oriented Approach, MAA Textbooks, MAA, 2008.

