An undirected graph H has adjacency matrix

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

(i) Without drawing a diagram of H, compute the degrees of all its vertices.
(ii) Now draw H and check your results.

These slides are available at https://bit.ly/3rx8srF

Triangular Graphs

The triangular graph T_{N} has vertices labelled by the two-element subsets of a set with N elements. Thus, for example, we could start with a set having three elements-say, $\{a, b, c\}$-then list all of its two-element subsets and regard the result as the vertex set of T_{3} : $V=\{\{a, b\},\{a, c\},\{b, c\}\}$. Pairs of these vertices are adjacent (they have an edge between them) if the subsets that label them have a nonempty intersection, so the corresponding graph looks like the picture below:

Draw diagrams for T_{4} and T_{5}, then show the following:
(i) T_{N} has $N(N-1) / 2$ vertices. Hint: How many two-elements subsets does a set with N elements have?
(ii) Each vertex of T_{N} has degree $2 N-4$.
(iii) If two vertices x and y are adjacent to each other in T_{N}, then there are $N-2$ vertices that are adjacent to both.
(iv) If two vertices x and y are not adjacent to each other in T_{N}, then there are 4 vertices that are adjacent to both.

