Counting Walks: From B5 in 2019's exam

Consider the adjacency matrix A of the graph below and determine whether there are positive integers k such that A^{k} has exclusively positive entires. If so, find the least such k.

These slides are available on Blackboard and at https://bit.ly/39cddAp

Counting Triangles: From B5 in 2022's exam

This problem is adapted from Harris, Hurst \& Mossinghof's book Graph Theory and Combinatorics.

A triangle in an undirected graph is a subgraph isomorphic to the cycle graph C_{3}.

- How many triangles does the undirected graph above contain?
- Prove that is A is the adjacency matrix of a graph $G(V, E)$, then $\frac{1}{2} A_{1,1}^{3}$ is the number of triangles in G that include v_{1}.

These slides are available on Blackboard and at https://bit.ly/39cddAp

Tropical Matrix Powers: from B5 in 2015

The matrix W below tabulates the edge-weights for a certain weighted, directed graph H where $W_{i j}$ is the weight of the edge (v_{i}, v_{j}) and an infinite weight means that the corresponding edge is absent.

$$
W=\left[\begin{array}{rrr}
0 & 1 & -1 \\
3 & 0 & 3 \\
\infty & 2 & 0
\end{array}\right]
$$

(a) Draw a diagram of H that includes the edge-weights.
(b) Explain what is meant by the operations $a \oplus b$ and $a \otimes b$ in min-plus algebra.
(c) Recall that the min-plus powers of an $n \times n$ tropical matrix W are defined by

$$
W^{\otimes(k+1)}=W^{\otimes k} \otimes W \quad \text { and } \quad W^{\otimes 1}=W
$$

then compute the least entry in $W^{\otimes 5}$, where W is the weight matrix above.

These slides are available on Blackboard and at https://bit.ly/39cddAp

