Consider the adjacency matrix A of the graph below and determine whether there are positive integers k such that A^k has exclusively positive entires. If so, find the least such k.

These slides are available on Blackboard and at https://bit.ly/39cddAp

This problem is adapted from Harris, Hurst & Mossinghof's book *Graph Theory and Combinatorics*.

A *triangle* in an undirected graph is a subgraph isomorphic to the cycle graph C_3 .

- How many triangles does the undirected graph above contain?
- Prove that is A is the adjacency matrix of a graph G(V, E), then $\frac{1}{2}A_{1,1}^3$ is the number of triangles in G that include v_1 .

These slides are available on Blackboard and at https://bit.ly/39cddAp

The matrix W below tabulates the edge-weights for a certain weighted, directed graph H where W_{ij} is the weight of the edge (v_i, v_j) and an infinite weight means that the corresponding edge is absent.

$$W = \left[\begin{array}{rrrr} 0 & 1 & -1 \\ 3 & 0 & 3 \\ \infty & 2 & 0 \end{array} \right]$$

- (a) Draw a diagram of *H* that includes the edge-weights.
- (b) Explain what is meant by the operations $a \oplus b$ and $a \otimes b$ in min-plus algebra.
- (c) Recall that the min-plus powers of an $n \times n$ tropical matrix W are defined by

$$W^{\otimes (k+1)} = W^{\otimes k} \otimes W$$
 and $W^{\otimes 1} = W$,

then compute the least entry in $W^{\otimes 5}$, where W is the weight matrix above.

These slides are available on Blackboard and at https://bit.ly/39cddAp