Listing and drawing all spregs

- To list all spregs with, say, distinguished vertex v_{5}, fill in the table below in as many ways as possible:

Once you've made all the tables, it's easy to draw all the spregs.

These slides are available on Blackboard and at https://bit.ly/3vkaIFz

Listing and drawing, all spregs

- One can count the possibilities without actually writing them out. The predecessor of v_{j} has to be chosen from $P_{v_{j}}, v_{j}$'s predecessor list, and so the number of possibilities is

$$
\prod_{j \neq 5}\left|P_{v_{j}}\right|=\prod_{j \neq 5} \operatorname{deg}_{i n}\left(v_{j}\right)
$$

These slides are available on Blackboard and at https://bit.ly/3vkaIFz

For the graph above the matrix L in Tutte's theorem is

$$
\begin{aligned}
L=D-A & =\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
0 & 3 & -1 & -1 & 0 \\
0 & 0 & 2 & -1 & -1 \\
0 & -1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

For the graph above the matrix $\hat{L}_{5} \equiv \mathcal{L}$ in the proof of Tutte's theorem is

$$
\mathcal{L}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 3 & -1 & -1 \\
0 & 0 & 2 & -1 \\
0 & -1 & -1 & 2
\end{array}\right]
$$

and the term in the determinant corresponding to $\sigma=\mathrm{id}$, the identity permutation, is

$$
\operatorname{sgn}(\sigma) \prod_{j=1}^{4} \mathcal{L}_{j \sigma(j)}=1 \times \prod_{j=1}^{4} \mathcal{L}_{j j}=\prod_{j=1}^{4} \operatorname{deg}_{i n}\left(v_{j}\right)=1 \times 3 \times 2 \times 2=12
$$

Counting spregs containing a cycle

Here we'll count spregs with distinguished vertex v_{5} that contain the cycle (v_{3}, v_{4}, v_{3})

- Asking that a particular cycle be present fixes some of the entries in the table:

v	v_{1}	v_{2}	v_{3}	v_{4}
v 's predecessor			v_{4}	v_{3}

These slides are available on Blackboard and at https://bit.ly/3vkaIFz

Counting spregs containing cycles

$$
\mathcal{L}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 3 & -1 & -1 \\
0 & 0 & 2 & -1 \\
0 & -1 & -1 & 2
\end{array}\right]
$$

Here we'll count spregs with distinguished vertex v_{5} that contain the cycle (v_{3}, v_{4}, v_{3})

- Here too, one can count the possibilities without actually writing them out: the predecessor of v_{j} has to be chosen from $P_{v_{j}}$, the predecessor list of v_{j} and so the number of possibilities is

$$
\prod_{j \notin\{3,4,5\}}^{5}\left|P_{v_{j}}\right|=\prod_{j \notin\{3,4,5\}} \operatorname{deg}_{i n}\left(v_{j}\right)=1 \times 3=3
$$

These slides are available on Blackboard and at https://bit.1y/3vkaIFz

$$
\mathcal{L}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 3 & -1 & -1 \\
0 & 0 & 2 & -1 \\
0 & -1 & -1 & 2
\end{array}\right]
$$

The permutation that corresponds to the cycle $\left(v_{3}, v_{4}, v_{3}\right)$ is the transposition $(3,4)$ or

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)
$$

so the term in the determinant is

$$
\begin{aligned}
\operatorname{sgn}(\sigma) \prod_{j=1}^{4} \mathcal{L}_{j \sigma(j)} & =(-1) \times \mathcal{L}_{11} \times \mathcal{L}_{22} \times \mathcal{L}_{34} \times \mathcal{L}_{43} \\
& =(-1) \times \operatorname{deg}_{i n}\left(v_{1}\right) \times \operatorname{deg}_{i n}\left(v_{2}\right) \times(-1) \times(-1) \\
& =(-1) \times 1 \times 3 \\
& =-3
\end{aligned}
$$

