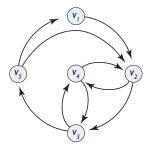
Listing and drawing all spregs

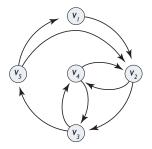


• To list all spregs with, say, distinguished vertex v_5 , fill in the table below in as many ways as possible:

v v_1 v_2 v_3 v_4 v's predecessor

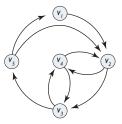
Once you've made all the tables, it's easy to draw all the spregs.

Listing and drawing, all spregs



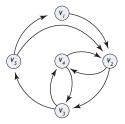
One can count the possibilities without actually writing them out. The predecessor of v_j has to be chosen from P_{v_i}, v_j's predecessor list, and so the number of possibilities is

$$\prod_{j \neq 5} |P_{v_j}| = \prod_{j \neq 5} \deg_{in}(v_j).$$



For the graph above the matrix \boldsymbol{L} in Tutte's theorem is

$$L = D - A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 3 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 0 & 1 \end{bmatrix}.$$



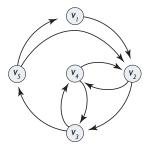
For the graph above the matrix $\hat{L}_5 \equiv \mathcal{L}$ in the proof of Tutte's theorem is

$$\mathcal{L} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 3 & -1 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

and the term in the determinant corresponding to $\sigma=\mathrm{id},$ the identity permutation, is

$$\operatorname{sgn}(\sigma) \prod_{j=1}^{4} \mathcal{L}_{j\sigma(j)} = 1 \times \prod_{j=1}^{4} \mathcal{L}_{jj} = \prod_{j=1}^{4} \operatorname{deg}_{in}(v_j) = 1 \times 3 \times 2 \times 2 = 12.$$

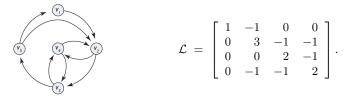
Counting spregs containing a cycle



Here we'll count spregs with distinguished vertex v_5 that contain the cycle (v_3, v_4, v_3)

• Asking that a particular cycle be present fixes some of the entries in the table:

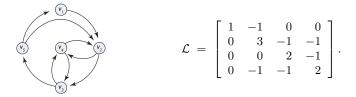
v v_1 v_2 v_3 v_4 v's predecessor v_4 v_3



Here we'll count spregs with distinguished vertex v_5 that contain the cycle (v_3, v_4, v_3)

• Here too, one can count the possibilities without actually writing them out: the predecessor of v_j has to be chosen from P_{v_j} , the predecessor list of v_j and so the number of possibilities is

$$\prod_{\substack{j \notin \{3,4,5\}}}^{5} |P_{v_j}| = \prod_{\substack{j \notin \{3,4,5\}}} \deg_{in}(v_j) = 1 \times 3 = 3.$$



The permutation that corresponds to the cycle (v_3, v_4, v_3) is the transposition (3, 4) or

$$\sigma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{array}\right),$$

so the term in the determinant is

$$\operatorname{sgn}(\sigma) \prod_{j=1}^{4} \mathcal{L}_{j\sigma(j)} = (-1) \times \mathcal{L}_{11} \times \mathcal{L}_{22} \times \mathcal{L}_{34} \times \mathcal{L}_{43}$$
$$= (-1) \times \operatorname{deg}_{in}(v_1) \times \operatorname{deg}_{in}(v_2) \times (-1) \times (-1)$$
$$= (-1) \times 1 \times 3$$
$$= -3.$$