In this week's review session we'll use Kirchoff's Matrix-Tree Theorem to count spanning trees in K_n .

- Draw K_3 and all the spaning trees it contains.
- Try to do the same thing for *K*₄: how many spanning trees can you find? As we'll see, there are 16.

Let's now use Kirchoff's Matrix-Tree theorem:

- Write down the graph Laplacian of *K*₃.
- Delete the first row and column of the Laplacian from above to form \hat{L}_1 and compute its determinant: this should match the number of spanning trees you found.
- Try the same approach for *K*₄.

Let's now analyse the Laplacian of K_n in general:

• Show that the graph Laplacian of K_n can be written as

$$L = \begin{bmatrix} (n-1) & -1 & \cdots & \cdots & -1 \\ -1 & (n-1) & -1 & \cdots & -1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ & & & (n-1) & -1 \\ -1 & \cdots & \cdots & -1 & (n-1) \end{bmatrix} = nI_n - M_n$$

where I_n is the $n \times n$ identity matrix and M_n is an $n \times n$ matrix full of ones.

Delete the first row and column of L to form L
^ˆ and show that

$$\hat{L}_1 = nI_{n-1} - M_{n-1}.$$

Here we find the eigenvalues of $\hat{L}_1 = nI_{n-1} - M_{n-1}$:

- Show that $u = (1, ..., 1) \in \mathbb{R}^{n-1}$ is an eigenvector of \hat{L}_1 with eigenvalue 1.
- Show that any vector $v \in \mathbb{R}^{n-1}$ satisfying $v \cdot u = 0$ is an eigenvector of \hat{L}_1 with eigenvalue *n*. *Hint: the rows of* M_{n-1} *are all equal to u*.
- Show that the subspace $V \subset \mathbb{R}^{n-1}$ defined by

$$V = \left\{ v \in \mathbb{R}^{n-1} \mid v \cdot u = 0 \right\}$$

has dimension (n-2). Hint: construct a set of n-2 linearly independent elements of V.

• Conclude that the eigenvalues of \hat{L}_1 are

$$1, \underbrace{n, \cdots, n}_{n-2 \text{ times}}.$$

Finally, use the fact that, for an arbitrary $(n-1) \times (n-1)$ matrix A whose eigenvalues are $\lambda_1, \ldots, \lambda_{n-1}$

$$\det(A) = \prod_{j=1}^{n-1} \lambda_j$$

to conclude that $\det(\hat{L}_1) = n^{n-2}$ and so that K_n contains n^{n-2} spanning trees.