In this week's review session we'll use Kirchoff's Matrix-Tree Theorem to count spanning trees in K_{n}.

- Draw K_{3} and all the spaning trees it contains.
- Try to do the same thing for K_{4} : how many spanning trees can you find? As we'll see, there are 16.

Let's now use Kirchoff's Matrix-Tree theorem:

- Write down the graph Laplacian of K_{3}.
- Delete the first row and column of the Laplacian from above to form \hat{L}_{1} and compute its determinant: this should match the number of spanning trees you found.
- Try the same approach for K_{4}.

These slides are available on Blackboard and at https://bit.1y/3uX5i2W

Spanning trees in K_{n} : in general

Let's now analyse the Laplacian of K_{n} in general:

- Show that the graph Laplacian of K_{n} can be written as

$$
L=\left[\begin{array}{ccccc}
(n-1) & -1 & \cdots & \cdots & -1 \\
-1 & (n-1) & -1 & \cdots & -1 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
& & & (n-1) & -1 \\
-1 & \cdots & \cdots & -1 & (n-1)
\end{array}\right]=n I_{n}-M_{n}
$$

where I_{n} is the $n \times n$ identity matrix and M_{n} is an $n \times n$ matrix full of ones.

- Delete the first row and column of L to form \hat{L}_{1} and show that

$$
\hat{L}_{1}=n I_{n-1}-M_{n-1}
$$

These slides are available on Blackboard and at https://bit.1y/3uX5i2W

The eigenvalues of \hat{L}_{1}

Here we find the eigenvalues of $\hat{L}_{1}=n I_{n-1}-M_{n-1}$:

- Show that $u=(1, \ldots, 1) \in \mathbb{R}^{n-1}$ is an eigenvector of \hat{L}_{1} with eigenvalue 1 .
- Show that any vector $v \in \mathbb{R}^{n-1}$ satisfying $v \cdot u=0$ is an eigenvector of \hat{L}_{1} with eigenvalue n. Hint: the rows of M_{n-1} are all equal to u.
- Show that the subspace $V \subset \mathbb{R}^{n-1}$ defined by

$$
V=\left\{v \in \mathbb{R}^{n-1} \mid v \cdot u=0\right\}
$$

has dimension $(n-2)$. Hint: construct a set of $n-2$ linearly independent elements of V.

- Conclude that the eigenvalues of \hat{L}_{1} are

These slides are available on Blackboard and at https://bit.ly/3uX5i2W

Finally, use the fact that, for an arbitrary $(n-1) \times(n-1)$ matrix A whose eigenvalues are $\lambda_{1}, \ldots, \lambda_{n-1}$

$$
\operatorname{det}(A)=\prod_{j=1}^{n-1} \lambda_{j}
$$

to conclude that $\operatorname{det}\left(\hat{L}_{1}\right)=n^{n-2}$ and so that K_{n} contains n^{n-2} spanning trees.

These slides are available on Blackboard and at https://bit.1y/3uX5i2W

