Colouring and Isomorphism

- Prove the following proposition or find a counterexample: If two graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ are isomorphic, then $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)$. Hint: It's helpful to start by proving If $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ are isomorphic and G_{1} is k-colourable, then so is G_{2}.
- Find the chromatic numbers of the graphs below, supporting your answers with rigorous arguments.

P

Q

R

- Which, if any, of the graphs illustrated above are isomorphic?

These slides are available on Blackboard and at https://bit.ly/3pH3UOd

Suppose that $G(V, E)$ is a graph with $|V|=5$ vertices and $|E|=7$ edges and no loops: list all the degree sequences that G could have.
(a) What is the largest number of edges that a graph on 5 vertices can have?
(b) What is the degree sequence of K_{5} ?
(c) If we remove an edge from K_{5}, what degree sequences can the resulting graph have?
(d) What if we remove two edges? Three?

These slides are available on Blackboard and at https://bit.ly/3pH3UOd

Which of the following could be the degree sequence of a graph?
(a) $(1,1,2,2,2,3,3)$
(b) $(3,3,4,4,4,5,5,5)$
(c) $(3,3,4,4,4,5,5)$
(d) $(1,2,3,4,5,6,7)$
(e) $(4,4,4,5,5,5,5)$
(f) $(0,2,2,3,4,5,6)$

These slides are available on Blackboard and at https://bit.ly/3pH3UOd

Degree Sequence Algorithm

This is not examinable, but it's interesting and provides an easy approach to problems about degree sequences. There is an algorithm that allows one to decide whether a given sequence \mathcal{D} can be the degree sequence of a graph. It depends on the following result

Theorem (V. Havel (1955) and S.L. Hakimi (1962))

Given a sequence $\mathcal{D}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{j} \leq d_{j+1}$, there is a graph having \mathcal{D} as it's degree sequence if and only if there is a graph whose degree sequence is given by $\mathcal{D}^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ with $d_{j}^{\prime} \leq d_{j+1}^{\prime}$, where D^{\prime} is formed by:

- removing a largest element, d_{n}, from \mathcal{D};
- subtracting 1 from each of the d_{n} largest remaining elements;
- rearranging the result in ascending order (if need be).

Think about how to use this result to decide whether a given sequence can be the degree sequence of a graph, then determine which of the following could be degree sequences:

- $(2,3,3,3,3)$
- $(2,2,4,4,4)$
- $(2,2,2,5,5,5,5)$
- $(3,3,4,5,5,5,5)$

These slides are available on Blackboard and at https://bit.ly/3pH3UOd

