A way to think about faces

A book I often mention ${ }^{1}$ offers this diagram to help the reader think about counting the number of faces in a planar diagram.

These slides are available on Blackboard and at https://bit.ly/3etGSXq

[^0]
Footballs, polygons and Euler

A football has 32 faces, each of which is either a regular pentagon or a regular hexagon. Because of the angles involved, exactly three faces meet at each corner. Without looking at a ball, determine how many faces of each type there are ${ }^{2}$.

These slides are available on Blackboard and at https://bit.ly/3etGSXq

[^1]
From this week's problem set

The Problem Set for this week asks us to prove:

Theorem

If $G(V, E)$ is a planar graph on $n \geq 3$ vertices and $n_{d}=|\{v \in V \mid \operatorname{deg}(v) \leq d\}|$ is the number of vertices of degree at most d, then

$$
n_{d} \geq \frac{n(d-5)+12}{d+1}
$$

That is, just by knowing that a graph is planar, we can say something about how many vertices of degree d it must have.

These slides are available on Blackboard and at https://bit.ly/3etGSXq

Why might this be useful or interesting?

Theorem (The Four Colour Theorem: Appel \& Haken, 1976)

```
If G is a planar graph then \chi(G)\leq4.
```

Suppose that, somehow, we could prove that a planar graph must contain at least one vertex with degree 3 or less. Then we could prove the Four Colour Theorem by induction on n using the following outline:

Base case: $|V|=1$ and, trivially, $\chi(G)=1 \leq 4$.
Inductive hypothesis: Assume the result is true whenever $|V| \leq n_{0}$.
Inductive step: Consider a planar graph $G(V, E)$ with $|V|=n_{0}+1$.

- Find a vertex v with $\operatorname{deg}(v) \leq 3$.
- Form $G^{\prime}=G \backslash v$. It is planar and has only n_{0} vertices and so, by the inductive hypothesis, has a four-colouring ϕ.
- Extend ϕ to a four-colouring of G by setting

$$
\phi(v)=\text { some colour not used for one of } v \text { 's neighbours. }
$$

This is guaranteed to work as $\operatorname{deg}(v) \leq 3$ and we have four colours available on Blackboard and.

The Four Colour Theorem remains hard

Sadly, the strongest result we can get from the inequality about n_{d} is:

Corollary

A planar graph has $G(V, E)$ has at least two vertices whose degree is 5 or less: that is $n_{5} \geq 2$.

In fact, it's possible to construct planar graphs $G(V, E)$ in which $\operatorname{deg}(v) \geq 5$ for all $v \in V$.

These slides are available on Blackboard and at https://bit.ly/3etGSXq

Planar graphs with $\operatorname{deg}(v)=5$ for all $v \in V$

In both the graphs below, every vertex has degree five-such a graph is said to be five-regular-and the example at right can be extended to produce planar, five-regular graphs with an arbitrarily large number of vertices.

Both examples were drawn from J. Kanno (2005), 5-regular simple planar graphs and D-operations.

From this week's problem set

The Problem Set for this week asks us to prove:

Theorem

If $G(V, E)$ is a planar graph on $n \geq 3$ vertices and $n_{d}=|\{v \in V \mid \operatorname{deg}(v) \leq d\}|$ is the number of vertices of degree at most d, then

$$
n_{d} \geq \frac{n(d-5)+12}{d+1}
$$

That is, just by knowing that a graph is planar, we can say something about how many vertices of degree d it must have.

These slides are available on Blackboard and at https://bit.ly/3etGSXq

Consider a graph $G(V, E)$ that has $|V|=12$ vertices and $|E|=61$ edges: that is, it is formed by removing 5 edges from K_{12}.

Answer the following questions, supporting each answer with a rigorous argument.

- Is G Eulerian?
- Is G Hamiltonian?
- What is the girth of G ?
- Is G planar?

These slides are available on Blackboard and at https://bit.ly/3etGSXq

Regular polyhedra

A regular polyhedron has f faces, each of which is a regular (edges all the same length, internal angles all the same) s-sided polygon, and arranged so that r faces meet at every vertex. Prove that there are only five such polyhedra.

These slides are available on Blackboard and at https://bit.ly/3etGSXq

[^0]: ${ }^{1}$ J. M. Harris, J. L. Hirst, and M. J. Mossinghoff (2008), Combinatorics and Graph Theory, Undergraduate Texts in Mathematics, Springer New York, 2nd edition.

[^1]: ${ }^{2}$ From D. A. Marcus (2008), Graph Theory: A Problem Oriented Approach, MAA Textbooks, MAA, 2008.

