
Lecture 13

Tropical Arithmetic and Shortest
Paths

This lecture introduces tropical arithmetic1 and explains how to use it to calculate
the lengths of all the shortest paths in a graph.
Reading:
The material here is not discussed in any of the main references for the course. The
lecture is meant to be self-contained, but if you find yourself intrigued by tropical
mathematics, you might want to look at a recent introductory article

David Speyer and Bernd Sturmfels (2004), Tropical mathematics. Lec-
ture notes from a Clay Mathematics Institute Senior Scholar Lecture,
Park City, Utah, 22 July 2004. Available as preprint 0408099 from the
arXiv preprint repository.

Very keen, mathematically sophisticated readers might also enjoy

Diane Maclagan and Bernd Sturmfels (2015), Introduction to Tropi-
cal Geometry, Vol. 161 of Graduate Studies in Mathematics, American
Mathematical Society, Providence, RI. ISBN: 978-0-8218-5198-2

while those interested in applications might prefer

B. Heidergott, G. Olsder, and J. van der Woude (2006), Max Plus at
Work, Vol. 13 of the Princeton Series in Applied Mathematics, Princeton
Univ Press. ISBN: 978-0-6911-1763-8.

The book by Heidergott et al. includes a tropical model of the Dutch railway network
and is more accessible than either the book by Maclagan and Sturmfels or the latter
parts of the article by Speyer and Sturmfels.

1Maclagan & Sturmfels write: The adjective“tropical” was coined by French mathematicians,
notably Jean-Eric Pin, to honor their Brazilian colleague Imre Simon, who pioneered the use of
min-plus algebra in optimization theory. There is no deeper meaning to the adjective “tropical”.
It simply stands for the French view of Brazil.
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http://arxiv.org/abs/math/0408099


13.1 All pairs shortest paths
In a previous lecture we used Breadth First Search (BFS) to solve the single-source
shortest paths problem in a weighted graph G(V,E,w) where the weights are trivial
in the sense that w(e) = 1 ∀e ∈ E. Today we’ll consider the problem where the
weights can vary from edge to edge, but are constrained so that all cycles have
positive weight. This ensures that Bellman’s equations have a unique solution. Our
approach to the problem depends on two main ingredients: a result about powers
of the adjacency matrix and a novel kind of arithmetic.

13.2 Counting walks using linear algebra
Our main result is very close in spirit to the following, simpler one.
Theorem 13.1 (Powers of the adjacency matrix count walks). Suppose G(V,E) is
a graph (directed or undirected) on n = |V | vertices and that A is its adjacency
matrix. If we define Aℓ, the ℓ-th matrix power of A, by

Aℓ+1 = AℓA and A0 = In,

where ℓ ∈ N, then for ℓ > 0,
Aℓ

ij = the number of walks of length ℓ from vertex i to vertex j, (13.1)

where Aℓ
ij is the i, j entry in Aℓ.

Proof. We’ll prove this by induction on ℓ, the number of edges in the walk. The
base case is ℓ = 1 and so Aℓ = A1 = A and Aij certainly counts the number of
one-step walks from vertex i to vertex j: there is either exactly one such walk, or
none.

Now suppose the result is true for all ℓ ≤ ℓ0 and consider

Aℓ0+1
ij =

n∑
k=1

Aℓ0
ikAkj.

The only nonzero entries in this sum appear for those values of k for which both
Aℓ0

ik and Akj are nonzero. Now, the only possible nonzero value for Akj is 1, which
happens when the edge (k, j) is present in the graph. Thus we could also think of
the sum above as running over vertices k such that the edge (k, j) is in E:

Aℓ0+1
ij =

∑
{k|(k,j)∈E}

Aℓ0
ik.

By the inductive hypothesis, Aℓ0
ik is the number of distinct, length-ℓ0 walks from

i to k. And if we add the edge (k, j) to the end of such a walk, we get a walk
from i to j. All the walks produced in this way are clearly distinct (those that pass
through different intermediate vertices k are obviously distinct and even those that
have the same k are, by the inductive hypothesis, different somewhere along the i
to k segment). Further, every walk of length ℓ0 + 1 from i to j must consist of a
length-ℓ0 walk from i to some neighbour k of j, followed by a step from k to j, so
we have completed the inductive step.
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Figure 13.1: In G, the graph at left, any walk from vertex 1 to vertex 3 must have
even length while in H, the directed graph at right, there are no walks of length 3 or
greater.

Two examples

The graph at left in Figure 13.1 contains six walks of length 2. If we represent them
with vertex sequences they’re

(1, 2, 1), (1, 2, 3), (2, 1, 2), (2, 3, 2), (3, 2, 1), and (3, 2, 3), (13.2)

while the first two powers of AG, G’s adjacency matrix, are

AG =

 0 1 0
1 0 1
0 1 0

 A2
G =

 1 0 1
0 2 0
1 0 1

 (13.3)

Comparing these we see that the computation based on powers of AG agrees with
the list of paths, just as Theorem 13.1 leads us to expect:

• A2
1,1 = 1 and there is a single walk, (1, 2, 1), from vertex 1 to itself;

• A2
1,3 = 1: counts the single walk, (1, 2, 3), from vertex 1 to vertex 3;

• A2
2,2 = 2: counts the two walks from vertex 2 to itself, (2,1,2) and (2,3,2);

• A2
3,1 = 1: counts the single walk, (3, 2, 1), from vertex 3 to vertex 1;

• A2
3,3 = 1: counts the single walk, (3, 2, 3), from vertex 3 to itself.

Something similar happens for the directed graph H that appears at right in Fig-
ure 13.1, but it has only a single walk of length two and none at all for lengths three
or greater.

AH =

 0 1 0
0 0 1
0 0 0

 A2
H =

 0 0 1
0 0 0
0 0 0

 A3
H =

 0 0 0
0 0 0
0 0 0

 (13.4)

An alternative to BFS

The theorem we’ve just proved suggests a way to find all the shortest paths in the
special case where w(e) = 1 ∀e ∈ E. Of course, in this case the weight of a path is
the same as its length.

(1) Compute the sequence of powers of the adjacency matrix A, A2, · · · , An−1.



(2) Observe that a shortest path has length at most n− 1

(3) To find the length of a shortest path from vi to vj, look through the sequence
of matrix powers and find the smallest ℓ such that Aℓ

ij > 0. This ℓ is the
desired length.

In the rest of the lecture we’ll generalise this strategy to graphs with arbitrary
weights.

13.3 Tropical arithmetic
Tropical arithmetic acts on the set R ∪ {∞} and has two binary operations, ⊕ and
⊗, defined by

x⊕ y = min(x, y) and x⊗ y = x+ y (13.5)
where, in the definition of ⊗, x + y means ordinary addition of real numbers sup-
plemented by the extra rule that x ⊗ ∞ = ∞ for all x ∈ R ∪ {∞}. These novel
arithmetic operators have many of the properties familiar from ordinary arithmetic.
In particular, they are commutative. For all a, b ∈ R ∪ {∞} we have both

a⊕ b = min(a, b) = min(b, a) = b⊕ a

and
a⊗ b = a+ b = b+ a = b⊗ a.

The tropical arithmetic operators are also associative:

a⊕ (b⊕ c) = min(a,min(b, c)) = min(a, b, c) = min(min(a, b), c) = (a⊕ b)⊕ c

and
a⊗ (b⊗ c) = a+ b+ c = (a⊗ b)⊗ c.

Also, there are distinct additive and multiplicative identity elements:

a⊕∞ = min(a,∞) = a and b⊗ 0 = 0 + b = b.

Finally, the multiplication is distributive:

a⊗ (b⊕ c) = a+min(b, c) = min(a+ b, a+ c) = (a⊗ b)⊕ (a⊗ c).

There are, however, important differences between tropical and ordinary arithmetic.
In particular, there are no additive inverses2 in tropical arithmetic and so one cannot
always solve linear equations. For example, there is no x ∈ R ∪ {∞} such that
(2⊗ x)⊕ 5 = 11. To see why, rewrite the equation as follows:

(2⊗ x)⊕ 5 = (2 + x)⊕ 5 = min(2 + x, 5) ≤ 5.

2Students who did Algebraic Structures II might recognise that this collection of properties
means that tropical arithmetic over R ∪ {∞} is a semiring.



13.3.1 Tropical matrix operations
Given two m × n matrices A and B whose entries are drawn from R ∪ {∞}, we’ll
define the tropical matrix sum A⊕B by:

(A⊕B)ij = Aij ⊕Bij = min(Aij, Bij)

And for compatibly-shaped tropical matrices A and B we can also define the tropical
matrix product by

(A⊗B)ij =
n⊕

k=1

Aik ⊗Bkj = min
1≤k≤n

(Aik +Bkj).

Finally, if B is an n× n square matrix, we can define tropical matrix powers as
follows:

B⊗k+1 = B⊗k ⊗B and B⊗0 = În. (13.6)
where În is the n× n tropical identity matrix,

În =


0 ∞ . . . ∞
∞ 0 ∞ ...

. . . . . . . . .
... ∞ 0 ∞
∞ . . . ∞ 0

 . (13.7)

It has zeroes on the diagonal and ∞ everywhere else. It’s easy to check that if A is
an m× n tropical matrix then

Îm ⊗ A = A = A⊗ În.

Example 13.2 (Tropical matrix operations). If we define two tropical matrices A
and B by

A =

[
1 2
0 ∞

]
and B =

[
∞ 1
1 ∞

]
then

A⊕B =

[
1⊕∞ 2⊕ 1
0⊕ 1 ∞⊕∞

]
=

[
min(1,∞) min(2, 1)
min(0, 1) min(∞,∞)

]
=

[
1 1
0 ∞

]
and

A⊗B =

[
(1⊗∞)⊕ (2⊗ 1) (1⊗ 1)⊕ (2⊗∞)
(0⊗∞)⊕ (∞⊗ 1) (0⊗ 1)⊕ (∞⊗∞)

]
=

[
min(1 +∞, 2 + 1) min(1 + 1, 2 +∞)
min(0 +∞, ∞+ 1) min(0 + 1, ∞+∞)

]
=

[
3 2
∞ 1

]
.



13.3.2 A tropical version of Bellman’s equations
Recall Bellman’s equations from Section 12.3.2. Given a weighted graph G(V,E,w)
in which all cycles have positive weight, we can find uj = d(v1, vj) by solving the
system

u1 = 0 and uj = min
k ̸=j

uk + wk,j for 2 ≤ j ≤ n,

where wk,j is an entry in a weight matrix w given by

wk,j =

{
w(vk, vj) if (vk, vj) ∈ E

∞ otherwise . (13.8)

We can rewrite Bellman’s equations using tropical arithmetic

uj = min
k ̸=j

uk + wk,j = min
k ̸=j

uk ⊗ wk,j =
⊕
k ̸=j

uk ⊗ wk,j

which looks almost like the tropical matrix product u⊗ w: we’ll exploit this obser-
vation in the next section.

13.4 Minimal-weight paths in a tropical style
We’ll now return to the problem of finding the weights of all the minimal-weight
paths in a weighted graph. The calculations are very similar to those in Section 13.2,
but now we’ll take tropical powers of a weight matrix W whose entries are given by:

Wk,j =


0 if j = k

w(vk, vj) if (vk, vj) ∈ E
∞ otherwise

. (13.9)

Note that W is very similar to the matrix w defined by Eqn. (13.8): the two differ
only along the diagonal, where wii = ∞ for all i, while Wii = 0.

Lemma 13.3. Suppose G(V,E,w) is a weighted graph (directed or undirected) on
n vertices. If all the cycles in G have positive weight and a matrix W is defined as
in Eqn. (13.9), then the entries in W⊗ℓ, the ℓ-th tropical power of W , are such that

W⊗ℓ
ii = 0 for all i

and, for i ̸= j, either

W⊗ℓ
ij = weight of a minimal-weight walk from vi to vj containing at most ℓ edges

when G contains such a walk or W⊗ℓ
ij = ∞ if no such walks exist.

Proof. We proceed by induction on ℓ. The base case is ℓ = 1 and it’s clear that the
only length-one walks are the edges themselves, while Wii = 0 by construction.



Now suppose the result is true for all ℓ ≤ ℓ0 and consider the case ℓ = ℓ0 + 1.
We will first prove the result for the off-diagonal entries, those for which i ̸= j. For
these entries we have

W⊗ℓ0+1
i,j =

n⊕
k=1

W⊗ℓ0
i,k ⊗Wk,j = min

1≤k≤n
W⊗ℓ0

ik +Wk,j (13.10)

and inductive hypothesis says that W⊗ℓ0
i,k is either the weight of a minimal-weight

walk from vi to vk containing ℓ0 or fewer edges or, if no such walks exist, W⊗ℓ0
ik = ∞.

Wk,j is given by Eqn. (13.9) and so there are three possibilities for the terms

W⊗ℓ0
i,k +Wk,j (13.11)

that appear in the tropical sum (13.10):
• They are infinite for all values of k, and so direct calculation gives W⊗ℓ0

i,j = ∞.
This happens when, for each k, we have one or both of the following:

– W⊗ℓ0
i,k = ∞, in which case the inductive hypothesis says that there are

no walks of length ℓ0 or less from vi to vk or
– Wk,j = ∞ in which case there is no edge from vk to vj.

And since this is true for all k, it implies that there are no walks of length
ℓ0 + 1 or less that run from vi to vj. Thus the lemma holds when i ̸= j and
W⊗ℓ0+1

ij = ∞.

• The expression in (13.11) is finite for at least one value of k, but not for k = j.
Then we know W⊗ℓ0

ij = ∞ and so there are no walks of length ℓ0 or less running
from vi to vj. Further,

W⊗ℓ0+1
i,j = min

k ̸=j
W⊗ℓ0

i,k +Wk,j

= min
{k | (vk,vj)∈E}

W⊗ℓ0
ij + w(vk, vj). (13.12)

and reasoning such as we used when discussing Bellman’s equations—a minimal-
weight walk from vi to vj consists of a minimal weight walk from vi to some
neighbour (or, in a digraph, some predecessor) vk of vj, plus the edge (vk, vj)—
means that the (13.12) gives the weight of a minimal-weight walk of length
ℓ0 + 1 and so the lemma holds here too.

• The expression in (13.11) is finite for case k = j and perhaps also for some
k ̸= j. When k = j we have

W⊗ℓ0
ik +Wk,j = W⊗ℓ0

ij +Wj,j = W⊗ℓ0
ij + 0 = W⊗ℓ0

ij ,

which, by the inductive hypothesis, is the weight of a minimal-weight walk of
length ℓ0 or less. If there are other values of k for which (13.11) is finite, then
they give rise to a sum over neighbours (or, if G is a digraph, over predecessors)
such as (13.12), which computes the weight of the minimal-weight walk of
length ℓ0 + 1. The minimum of this quantity and W⊗ℓ0

ij is then the minimal
weight for any walk involving ℓ0 +1 or fewer edges and so the lemma holds in
this case too.



Finally, note that reasoning above works for W⊗ℓ
ii too: W⊗ℓ

ii is the weight of a
minimal-weight walk from vi to itself. And given that any walk from vi to itself
must contain a cycle and that all cycles have positive weight, we can conclude that
the tropical sum

W⊗ℓ0+1
i,i = min

k
W⊗ℓ0

i,k +Wk,i

is minimised by k = i, when W⊗ℓ0
i,k = W⊗ℓ0

i,i = 0 (by the inductive hypothesis) and
Wi,i = 0 (by construction) so

min
k

W⊗ℓ0
i,k +Wk,i = W⊗ℓ0

i,i +Wi,i = 0 + 0 = 0

and the theorem is proven for the diagonal entries too.

Finally, we can state our main result:
Theorem 13.4 (Tropical matrix powers and shortest paths). If G(V,E,w) is a
weighted graph (directed or undirected) on n vertices in which all the cycles have
positive weight, then d(vi, vj), the weight of a minimal-weight path from vi to vj, is
given by

d(vi, vj) = W
⊗(n−1)
i,j (13.13)

Proof. First note that for i ̸= j, any minimal-weight walk from vi to vj must actually
be a minimal weight path. One can prove this by contradiction by noting that any
walk that isn’t a path must revisit at least one vertex. Say that v⋆ is one of these
revisited vertices. Then the segment of the walk that runs from the first appearance
of v⋆ to the second must have positive weight (it’s a cycle and all cycles in G have
positive weight) and so we can reduce the total weight of the walk by removing this
cycle. But this contradicts our initial assumption that the walk had minimal weight.

Combining this with the previous lemma and the observation that a path in G
contains at most n− 1 edges establishes the result.

An example

The graph illustrated in Figure 13.2 is small enough that we can just read off the
weights of its minimal-weight paths. If we assemble these results into a matrix D
whose entries are given by

Dij =


0 if i = j

d(vi, vj) if i ̸= j and vj is reachable from vi
∞ otherwise

we get

D =

 0 −2 −1
3 0 1
2 0 0

 .

To verify Theorem 13.4 we need only write down the weight matrix and its
tropical square, which are

W =

 0 −2 1
∞ 0 1
2 ∞ 0

 and W⊗2 =

 0 −2 −1
3 0 1
2 0 0

 .
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Figure 13.2: The graph above contains two directed cycles, (v1, v2, v3, v1), which has
weight 1, and (v1, v3, v1), which has weight 2. Theorem 13.4 thus applies and we
can compute the weights of minimal-weight paths using tropical powers of the weight
matrix.

The graph has n = 3 vertices and so we expect W⊗(n−1) = W⊗2 to agree with the
distance matrix D, which it does.
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