
Lecture 6

Trees and forests

This section of the notes introduces an important family of graphs—trees and
forests—and also serves as an introduction to inductive proofs on graphs.
Reading:
The material in today’s lecture comes from Section 1.2 of

Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition
(available online via SpringerLink),

though the discussion there includes a lot of material about counting trees that we’ll
handle in a different way.

6.1 Basic definitions
We begin with a flurry of definitions.

Definition 6.1. A graph G(V,E) is acyclic if it doesn’t include any cycles.

Another way to say a graph is acyclic is to say that it contains no subgraphs
isomorphic to one of the cycle graphs.

Definition 6.2. A tree is a connected, acyclic graph.

Definition 6.3. A forest is a graph whose connected components are trees.

Trees play an important role in many applications: see Figure 6.1 for examples.

6.1.1 Leaves and internal nodes
Trees have two sorts of vertices: leaves (sometimes also called leaf nodes) and internal
nodes: these terms are defined more carefully below and are illustrated in Figure 6.2.

Definition 6.4. A vertex v ∈ V in a tree T (V,E) is called a leaf or leaf node if
deg(v) = 1 and it is called an internal node if deg(v) > 1.

6.1

http://bit.ly/Jungnickel4


Two trees Graphs that aren’t trees

Figure 6.1: The two graphs at left (white and yellow vertices) are trees, but the two
at right aren’t: the one at upper right (with green vertices) has multiple connected
components (and so it isn’t connected) while the one at lower right (blue vertices)
contains a cycle. The graph at upper right is, however, a forest as each of its
connected components is a tree.

Figure 6.2: In the two trees above the internal nodes are white, while the leaf nodes
are coloured green or yellow.



6.1.2 Kinds of trees
Definition 6.5. A binary tree is a tree in which every internal node has degree
three.

Definition 6.6. A rooted tree is a tree with a distinguished leaf node called the
root node.

Warning to the reader: The definition of rooted tree above is common among
biologists, who use trees to represent evolutionary lineages (see Darwin’s sketch at
right in Figure 6.3). Other researchers, especially computer scientists, use the same
term to mean something slightly different.

Figure 6.3: At left are three examples of rooted binary trees. In all cases the root
node is brown, the leaves are green and the internal nodes are white. At right is a page
from one of Darwin’s notebooks, showing the first known sketch of an evolutionary
tree: here the nodes represent species and the edges indicate evolutionary descent.

6.2 Three useful lemmas and a proposition
Lemma 6.7 (Minimal |E| in a connected graph). A connected graph on n vertices
has at least (n− 1) edges.

Lemma 6.8 (Maximal |E| in an acyclic graph). An acyclic graph on n vertices has
at most (n− 1) edges.

Definition 6.9. A vertex v is said to be isolated if it has no neighbours. Equiva-
lently, v is isolated if deg(v) = 0.

Lemma 6.10 (Vertices of degree 1). If a graph G(V,E) has n ≥ 2 vertices, none
of which are isolated, and (n− 1) edges then G has at least two vertices of degree 1.



v

e

G

G\e

G\v

Figure 6.4: A graph G(V,E) and the subgraphs G\v formed by deleting the yellow
vertex v and G\e formed by deleting the red edge e.

6.2.1 A festival of proofs by induction
Proofs by induction about graphs generally have three parts

• a base case that typically involves a graph with very few vertices or edges
(often just one or two) and for which the result is obvious;

• an inductive hypothesis in which one assumes the result is true for all
graphs with, say, n0 or fewer vertices (or perhaps m0 or fewer edges);

• an inductive step where one starts with a graph that satisfies the hypotheses
of the theorem and has, say, n0 + 1 vertices (or m0 + 1 edges or whatever is
appropriate) and then reduces the theorem as it applies to this larger graph
to something involving smaller graphs (to which the inductive hypothesis ap-
plies), typically by deleting an edge or vertex.

6.2.2 Graph surgery
The proofs below accomplish their inductive steps by deleting either an edge or a
vertex, so here I introduce some notation for these processes.

Definition 6.11. If G(V,E) is a graph and v ∈ V is one of its vertices then G\v
is defined to be the subgraph formed by deleting v and all the edges that are incident
on v.

Definition 6.12. If G(V,E) is a graph and e ∈ E is one of its edges then G\e is
defined to be the subgraph formed by deleting e.

Both these definitions are illustrated in Figure 6.4.
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Figure 6.5: In the inductive step of the proof of Lemma 6.7 we delete some arbitrary
vertex v ∈ V in a connected graph G(V,E) to form the graph G\v. The result may
still be a connected graph, as in G\v1 at upper right, or may fall into several connected
components, as in G\v2 at lower right.

Proof of Lemma 6.7

We’ll prove Lemma 6.7 by induction on the number of vertices. First let us rephrase
the lemma in an equivalent way:

If G(V,E) is a connected graph on |V | = n vertices, then |E| ≥ n− 1.

Base case: There is only one graph with |V | = 1 and it is, by definition, connected
and has |E| = 0, which satisfies the lemma. One could alternatively start from
K2, which is the only connected graph on two vertices and has |E| = 1.

Inductive hypothesis: Suppose that the lemma is true for all graphs G(V,E) with
1 ≤ |V | ≤ n0, for some fixed n0.

Inductive step: Now consider a connected graph G(V,E) with |V | = n0 + 1: the
lemma we’re trying to prove then says |E| ≥ n0. Choose some vertex v ∈ V
and delete it, forming the graph G\v. We’ll say that the new graph has vertex
set V ′ = V \v and edge set E ′. There are two possibilities (see Figure 6.5):

(i) G\v is still a connected graph;
(ii) G\v has k ≥ 2 connected components: call these G1(V1, E1), . . . , Gk(Vk, Ek).

In the first case—where G\v is connected—we also know |V ′| = |V | − 1 = n0

and so the inductive hypothesis applies and tells us that |E ′| ≥ (n0 − 1). But
as G was connected, the vertex v that we deleted must have had at least one
neighbour, and hence at least one edge, so we have

|E| ≥ |E ′|+ 1 ≥ (n0 − 1) + 1 ≥ n0

which is exactly the result we sought.



In the second case—where deleting v causes G to fall into k ≥ 2 connected
components—we can call the components G1(V1, E1), G2(V2, E2), · · · , Gk(Vk, Ek)
with nj = |Vj|. Then

k∑
j=1

nj =
k∑

j=1

|Vj| = |V ′| = |V | − 1 = n0.

Further, the j-th connected component is a connected graph on nj < n0

vertices and so the inductive hypothesis applies to each component separately,
telling us that |Ej| ≥ nj − 1. But then we have

|E ′| =
k∑

j=1

|Ej| ≥
k∑

j=1

(nj − 1) ≥

(
k∑

j=1

nj

)
− k ≥ n0 − k. (6.1)

And, as we know that the original graph G was connected, we also know
that the deleted vertex v was connected by at least one edge to each of the k
components of G\v. Combining this observation with Eqn. (6.1) gives us

|E| ≥ |E ′|+ k ≥ (n0 − k) + k ≥ n0,

which proves the lemma for the second case too.

Proof of Lemma 6.8

Once again, we’ll do induction on the number of vertices. As above, we begin by
rephrasing the lemma:

If G(V,E) is an acyclic graph on |V | = n vertices, then |E| ≤ n− 1.

Base case: Either K1 or K2 could serve as the base case: both are acyclic graphs
that have a maximum of |V | − 1 edges.

Inductive hypothesis: Suppose that Lemma 6.8 is true for all acyclic graphs with
|V | ≤ n0, for some fixed n0.

Inductive step: Consider an acyclic graph G(V,E) with |V | = n0+1: we want to
prove that |E| ≤ n0. Choose an arbitrary edge e = (a, b) ∈ E and delete it to
form G′(V,E ′) = G\e, which has the same vertex set as G, but a smaller edge
set E ′ = E\e.
First note that G′ must have one more connected component than G does be-
cause a and b, the two vertices that appear in the deleted edge e, are connected
in G, but cannot be connected in G′. If they were still connected, there would
(by Prop. 5.17) be a path connecting them in G′ that, when combined with
e, would form a cycle in G, contradicting the assumption that G is acyclic.
Thus we know that G′ has k ≥ 2 connected components that we can call
G1(V1, E1), . . . , Gk(Vk, Ek).



If we again define nj = |Vj|, we know that nj ≤ n0 for all j and so the inductive
hypothesis applies to each component separately: |Ej| ≤ nj −1. Adding these
up yields

|E ′| =
k∑

j=1

|Ej| ≤
k∑

j=1

(nj − 1) ≤

(
k∑

j=1

nj

)
− k ≤ (n0 + 1)− k.

And then, as |E| = |E ′|+ 1 we have

|E| = |E ′|+ 1 ≤ (n0 + 1− k) + 1 ≤ n0 + (2− k) ≤ n0,

where the final inequality follows from the observation that G′ has k ≥ 2
connected components.

Proof of Lemma 6.10

The final Lemma in this section is somewhat technical: we’ll use it in the proof of
a theorem in Section 6.3. The lemma says that graphs G(V,E) that have |V | = n
and |E| = (n − 1) and have no isolated vertices must contain at least two vertices
with degree one. The proof is by contradiction and uses the Handshaking Lemma.

Imagine the vertices are numbered and arranged in order of increasing degree
so V = {v1, . . . , vn} and deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vn). The Handshaking
Lemma then tells us that

n∑
j=1

deg(vj) = 2|E| = 2(n− 1) = 2n− 2. (6.2)

As there are no isolated vertices, we also know that deg(vj) ≥ 1 for all j. Now
assume—aiming for a contradiction—that there is at most a single vertex with
degree one. That is, assume deg(v1) ≥ 1, but deg(vj) ≥ 2 ∀j ≥ 2. Then

n∑
j=1

deg(vj) = deg(v1) +
n∑

j=2

deg(vj)

≥ 1 +
n∑

j=2

2

≥ 1 + (n− 1)× 2

≥ 2n− 1.

This contradicts Eqn. (6.2), which says that the sum of degrees is 2n − 2. Thus
it must be true that two or more vertices have degree one, which is the result we
sought.

6.3 A theorem about trees
The lemmas of the previous section make it possible to give several nice character-
isations of a tree and the theorem below, which has a form that one often finds in
Discrete Maths or Algebra books, shows that they’re all equivalent.



Theorem 6.13 (Jungnickel’s Theorem 1.2.8). For a graph G(V,E) on |V | = n
vertices, any two of the following imply the third:

(a) G is connected.

(b) G is acyclic.

(c) G has (n− 1) edges.

6.3.1 Proof of the theorem
The theorem above is really three separate propositions bundled into one statement:
we’ll prove them in turn.

(a) and (b) =⇒ (c)

On the one hand, our lemma about the minimal number of edges in a connected
graph (Lemma 6.7) says that property (a) implies that |E| ≥ (n − 1). On the
other hand our lemma about the maximal number of edges in an acyclic graph
(Lemma 6.8) says |E| ≤ (n − 1). The only possibility compatible with both these
inequalities is |E| = (n− 1).

(a) and (c) =⇒ (b)

To prove this by contradiction, assume that it’s possible to have a connected graph
G(V,E) that has (n−1) edges and contains a cycle. Choose some edge e that’s part
of the cycle and delete it to form H = G\e. H is then a connected graph (removing
an edge from a cycle does not change the number of connected components) with
only n−2 edges, which contradicts our earlier result (Lemma 6.7) about the minimal
number of edges in a connected graph.

(b) and (c) =⇒ (a)

We’ll prove—by induction on n = |V |—that an acyclic graph with |V | − 1 edges
must be connected.

Base case: There is only one graph with |V | = 1. It’s acyclic, has |V | − 1 = 0
edges and is connected.

Inductive hypothesis: Suppose that all acyclic graphs with 1 ≤ |V | ≤ n0 vertices
and |E| = |V | − 1 edges are connected.

Inductive step: Now consider an acyclic graph G(V,E) with |V | = n0 + 1 and
|E| = n0: we need to prove that it’s connected. First, notice that such a
graph cannot have any isolated vertices, for suppose there was some vertex v
with deg(v) = 0. We could then delete v to produce H = G\v, which would
be an acyclic graph with n0 vertices and n0 edges, contradicting our lemma
(Lemma 6.8) about the maximal number of edges in an acyclic graph.



Thus G contains no isolated vertices and so, by the technical lemma from
the previous section (Lemma 6.10), we know that it has at least two vertices
of degree one. Say that one of these two is u ∈ V and delete it to make
G′(V ′, E ′) = G\u. Then G′ is still acyclic, because G is, and deleting vertices
can’t create cycles. Furthermore G′ has |V ′| = |V | − 1 = n0 vertices and
|E ′| = |E| − 1 = n0 − 1 edges. This means that the inductive hypothesis
applies and we can conclude that G′ is connected. But if G′ is connected, so
is G and we are finished.
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