
Lecture 2

Representation, Sameness and
Parts

Reading: Some of the material in today’s lecture comes from the beginning of
Chapter 1 in

Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition,
which is available online via SpringerLink.

If you are at the university, either physically or via the VPN, you can download the
chapters of this book as PDFs.

2.1 Ways to represent a graph
The first part of this lecture is concerned with various ways of specifying a graph.
It may seem unnecessary to have so many different descriptions for a mathematical
object that is, fundamentally, just a pair of finite sets, but each of the representa-
tions below will prove convenient when we are developing algorithms (step-by-step
computational recipes) to solve problems involving graphs.

2.1.1 Edge lists
From the first lecture, we already how to represent a graph G(V,E) by specifying
its vertex set V and its edge list E as, for example,

Example 2.1 (Edge list representation). The undirected graph G(V,E) with

V = {1, 2, 3} and E = {(1, 2), (2, 3), (1, 3)}

is K3, the complete graph on three vertices. But if we regard the edges as directed
then G is the graph pictured at the right of Figure 2.1

Of course, if every vertex in G(V,E) appears in some edge (equivalently, if every
vertex has nonzero degree), then we can dispense with the vertex set and specify
the graph by its edge list alone.

2.1

http://bit.ly/Jungnickel4

1 2

3

1 2

3

Figure 2.1: If graph from Example 2.1 is regarded as undirected (our default
assumption) then it is K3, the complete graph on three vertices, but if it’s directed
then it’s the digraph at right above.

2.1.2 Adjacency matrices
A second approach is to give an adjacency matrix, often written A. One builds an
adjacency matrix by first numbering the vertices, so that the vertex set becomes
V = {v1, v2, . . . , vn} for a graph on n vertices. The adjacency matrix A is then an
n× n matrix whose entries are given by the following rule:

Aij =

{
1 if (vi, vj) ∈ E
0 otherwise (2.1)

Once again, the directed and undirected cases are different. For the graphs from
Example 2.1 we have:

if G is
1 2

3

then A =

 0 1 1
1 0 1
1 1 0

 ,

but if G is
1 2

3

then A =

 0 1 1
0 0 1
0 0 0

 .

Remark 2.2. The following properties of the adjacency matrix follow readily from
the definition in Eqn. (2.1).

• The adjacency matrix is not unique because it depends on a numbering scheme
for the vertices. If one renumbers the vertices, the rows and columns of A will
be permuted accordingly.

• If G(V,E) is undirected then its adjacency matrix A is symmetric. That’s
because we think of the edges as unordered pairs, so, for example, (1, 2) ∈ E
is the same thing as (2, 1) ∈ E.

• If the graph has no loops then Ajj = 0 for 1 ≤ j ≤ n. That is, there are zeroes
down the main diagonal of A.

• One can compute the degree of a vertex by adding up entries in the adjacency
matrix. I leave it as an exercise for the reader to establish that in an undirected
graph,

deg(vj) =
n∑

k=1

Ajk =
n∑

k=1

Akj, (2.2)

where the first sum runs across the j-th row, while the second runs down the
j-th column. Similarly, in a directed graph we have

degout(vj) =
n∑

k=1

Ajk and degin(vj) =
n∑

k=1

Akj. (2.3)

• Sometimes one sees a modified form of the adjacency matrix used to describe
multigraphs (graphs that permit two or more edges between a given pair of
vertices). In this case one takes

Aij = number of times the edge (i, j) appears in E (2.4)

2.1.3 Adjacency lists
One can also specify an undirected graph by giving the adjacency lists of all its
vertices.

Definition 2.3. In an undirected graph G(V,E) the adjacency list associated with
a vertex v is the set Av ⊆ V defined by

Av = {u ∈ V | (u, v) ∈ E}.

An example appears in Figure 2.2. It follows readily from the definition of degree
that

deg(v) = |Av|. (2.5)

4

2

3 5

1

A1 = {2}
A2 = {1, 3, 4}
A3 = {2, 4, 5}
A4 = {2, 3}
A5 = {3}

Figure 2.2: The graph at left has adjacency lists as shown at right.

1 2

3

v Predecessors Successors
1 ∅ {2, 3}
2 {1} {3}
3 {1, 2} ∅

Figure 2.3: The directed graph at left has the predecessor and successor lists shown
at right.

Similarly, one can specify a directed graph by providing separate lists of succes-
sors or predecessors (these terms were defined in Lecture 1) for each vertex.

Definition 2.4. In an directed graph G(V,E) the predecessor list of a vertex v
is the set Pv ⊆ V defined by

Pv = {u ∈ V | (u, v) ∈ E}

while the successor list of v is the set Sv ⊆ V defined by

Sv = {u ∈ V | (v, u) ∈ E}.

Figure 2.3 gives some examples. The analogues of Eqn. (2.5) for a directed graph
are

degin(v) = |Pv| and degout(v) = |Sv|. (2.6)

2.2 When are two graphs the same?
For the small graphs that appear in these notes, it’s usually fairly obvious when
two of them are the same. But in general it’s nontrivial to be rigorous about what
we mean when we say two graphs are “the same”. The point is that if we stick to
the abstract definition of a graph-as-two-sets, we need to formulate our definition
of sameness in a similar style. Informally we’d like to say that two graphs are the
same (we’ll use the term isomorphic for this) if it is possible to relabel the vertex
sets in such a way that their edge sets match up. More precisely:

Definition 2.5. Two graphs G1(V1, E1) and G2(V2, E2) are said to be isomorphic
if there exists a bijection1 α : V1 → V2 such that the edge (α(a), α(b)) ∈ E2 if and
only if (a, b) ∈ E1.

Generally it’s difficult to decide whether two graphs are isomorphic. In particu-
lar, there are no known fast algorithms2 (we’ll learn to speak more precisely about
what it means for an algorithm to be “fast” later in the term) to decide. One can,

1Recall that a bijection is a mapping that’s one-to-one and onto.
2Algorithms for graph isomorphism are the subject of intense current research: see Erica Klar-

reich’s Jan. 2017 article in Quanta Magazine, Complexity Theory Problem Strikes Back, for a
popular account of some recent results.

https://www.quantamagazine.org/graph-isomorphism-strikes-back-20170105

000

011

110

101

001

010

100

111

1

2 4

3

5
a

e g

hf

c

b d

6 8

7

Figure 2.4: Here are three different graphs that are all isomorphic to the cube
graph I3, which is the middle one. The bijections that establish the isomorphisms
are listed in Table 2.1.

v 000 001 010 011 100 101 110 111
αL(v) 1 2 3 4 5 6 7 8
αR(v) a b c d e f g h

Table 2.1: If we number the graphs in Figure 2.4 so that the leftmost is G1(V1, E1)
and the rightmost is G3(V3, E3), then the bijections αL : V2 → V1 and αR : V2 → V3

listed above establish that G2 is isomorphic, respectively, to G1 and G3.

of course, simply try all possible bijections between the two vertex sets, but there
are n! of these for graphs on n vertices and so this brute force approach rapidly
becomes impractical. On the other hand, it’s often possible to detect quickly that
two graphs aren’t isomorphic. The simplest such tests are based on the following
propositions, whose proofs are left to the reader.

Proposition 2.6. If G1(V1, E1) and G2(V2, E2) are isomorphic then |V1| = |V2| and
|E1| = |E2|.

Proposition 2.7. If G1(V1, E1) and G2(V2, E2) are isomorphic and α : V1 → V2 is
the bijection that establishes the isomorphism, then deg(v) = deg(α(v)) for every
v ∈ V1 and deg(u) = deg(α−1(u)) for every u ∈ V2.

Another simple test depends on the following quantity, examples of which appear
in Figure 2.5.

Definition 2.8. The degree sequence of an undirected graph G(V,E) is a list of
the degrees of the vertices, arranged in ascending order.

The corresponding test for non-isomorphism depends on the following proposition,
whose proof is left as an exercise.

Proposition 2.9. If G1(V1, E1) and G2(V2, E2) are isomorphic then they have the
same degree sequence.

(1, 2, 2, 3) (2, 2, 2) (1, 1, 2, 2)

Figure 2.5: Three small graphs and their degree sequences.

v
1

v
2

v
4

u
1

u
2

u
3

u
4

u
5

v
3

v
5

Figure 2.6: These two graphs both have degree sequence (1, 2, 2, 2, 3), but they’re
not isomorphic: see Example 2.10 for a proof.

Unfortunately although it’s a necessary condition for two isomorphic graphs to
have the same degree sequence, a shared degree sequence isn’t sufficient to establish
isomorphism. That is, it’s possible for two graphs to have the same degree sequence,
but not be isomorphic: Figure 2.6 shows one such pair, but it’s easy to make up
more.

Example 2.10 (Proof that the graphs in Figure 2.6 aren’t isomorphic). Both graphs
in Figure 2.6 have the same degree sequence, (1, 2, 2, 2, 3), so both contain a single
vertex of degree 1 and a single vertex of degree 3. These vertices are adjacent in the
graph at left, but not in the one at right and this observation forms the basis for a
proof by contradiction that the graphs aren’t isomorphic.

Assume, for contradiction, that they are isomorphic and that

α : {v1, v2, v3, v4, v5} → {u1, u2, u3, u4, u5}

is the bijection that establishes the isomorphism. Then Prop. 2.7 implies that it must
be true that α(v1) = u1 (as these are the sole vertices of degree one) and α(v2) = u3.
But then the presence of the edge (v1, v2) on the left would imply the existence of an
edge (α(v1), α(v2)) = (u1, u3) on the right, and no such edge exists. This contradicts
our assumption that α establishes an isomorphism, so no such α can exist and the
graphs aren’t isomorphic.

2.3 Terms for parts of graphs
Finally, we’ll often want to speak of parts of graphs and the two most useful defini-
tions here are:

Definition 2.11. A subgraph of a graph G(V,E) is a graph G′(V ′, E ′) where
V ′ ⊆ V and E ′ ⊆ E.

and

Definition 2.12. Given a graph G(V,E) and a subset of its vertices V ′ ⊆ V , the
subgraph induced by V ′ is the subgraph G′(V ′, E ′) where

E ′ = {(u, v) |u, v ∈ V ′ and (u, v) ∈ E}.

That is, the subgraph induced by the vertices V ′ consists of V ′ itself and all those
edges in the original graph that involve only vertices from V ′. Both these definitions
are illustrated in Figure 2.7.

Figure 2.7: The three graphs at right are subgraphs of the one at left. The middle
one is the subgraph induced by the blue shaded vertices.

	I Notions and Notation
	First Steps in Graph Theory
	The Königsberg Bridge Problem
	Definitions: graphs, vertices and edges
	Standard examples
	A first theorem about graphs

	Representation, Sameness and Parts
	Ways to represent a graph
	Edge lists
	Adjacency matrices
	Adjacency lists

	When are two graphs the same?
	Terms for parts of graphs

	Graph Colouring
	Notions and notation
	An algorithm to do colouring
	The greedy colouring algorithm
	Greedy colouring may use too many colours

	An application: avoiding clashes

	Efficiency of algorithms
	Introduction
	Examples and issues
	Greedy colouring
	Matrix multiplication
	Primality testing and worst-case estimates

	Bounds on asymptotic growth
	Analysing the examples
	Greedy colouring
	Matrix multiplication
	Primality testing via trial division

	Afterword

	Walks, Trails, Paths and Connectedness
	Walks, trails and paths
	Connectedness
	Connectedness in undirected graphs
	Connectedness in directed graphs

	Afterword: a useful proposition

	II Trees and the Matrix-Tree Theorem
	Trees and forests
	Basic definitions
	Leaves and internal nodes
	Kinds of trees

	Three useful lemmas and a proposition
	A festival of proofs by induction
	Graph surgery

	A theorem about trees
	Proof of the theorem

	The Matrix-Tree Theorems
	Kirchoff's Matrix-Tree Theorem
	Tutte's Matrix-Tree Theorem
	Arborescences: directed trees
	Tutte's theorem

	From Tutte to Kirchoff

	Matrix-Tree Ingredients
	Lightning review of permutations
	The Symmetric Group Sn
	Cycles and sign

	Using graphs to find the cycle decomposition
	The determinant is a sum over permutations
	The Principle of Inclusion/Exclusion
	A familiar example
	Three subsets
	The general case
	An example

	Appendix: Proofs for Inclusion/Exclusion
	Proof of Lemma 8.12, the case of two sets
	Proof of Theorem 8.13
	Alternative proof

	Proof of Tutte's Matrix-Tree Theorem
	Single predecessor graphs
	Counting spregs with determinants
	Counting spregs
	An example
	Counting spregs in general

	Proof of Tutte's theorem

	III Eulerian and Hamiltonian Graphs
	Eulerian Multigraphs
	Hamiltonian graphs and the Bondy-Chvátal Theorem
	Hamiltonian graphs
	The closure a graph
	An algorithm to construct [G]
	An example

	The Bondy-Chvátal Theorem
	Afterword

	IV Distance in Graphs and Scheduling
	Distance in Graphs
	Adding weights to edges
	A notion of distance
	Shortest path problems
	Uniform weights & Breadth First Search
	Bellman's equations

	Appendix: BFS revisited

	Tropical Arithmetic and Shortest Paths
	All pairs shortest paths
	Counting walks using linear algebra
	Tropical arithmetic
	Tropical matrix operations
	A tropical version of Bellman's equations

	Minimal-weight paths in a tropical style

	Critical Path Analysis
	Scheduling problems
	From tasks to weighted digraphs
	From weighted digraphs to schedules

	Graph-theoretic details
	Shortest times and maximal-weight paths
	Topological ordering

	Critical paths
	Earliest starts
	Latest starts
	Critical paths

	V Planar Graphs
	Planar Graphs
	Drawing graphs in the plane
	The topology of curves in the plane
	Faces of a planar graph

	Euler's formula for planar graphs
	Planar graphs can't have many edges
	Preliminaries: bridges and girth
	Main result: an inequality relating n and m
	Gritty details of the proof of Theorem 15.12
	The maximal number of edges in a planar graph

	Two non-planar graphs
	Kuratowski's Theorem
	Afterword

