
Lecture 15

Planar Graphs

This lecture introduces the idea of a planar graph—one that you can draw in such
a way that the edges don’t cross. Such graphs are of practical importance in, for
example, the design and manufacture of integrated circuits as well as the automated
drawing of maps. They’re also of mathematical interest in that, in a sense we’ll
explore, there are really only two non-planar graphs.
Reading:
The first part of our discussion is based on that found in Chapter 10 of

J. A. Bondy and U. S. R. Murty (2008), Graph Theory, Vol. 244 of
Springer Graduate Texts in Mathematics, Springer Verlag,

but in subsequent sections I’ll also draw on material from Section 1.5 of
Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition,
which is available online via SpringerLink.

15.1 Drawing graphs in the plane
A graph G is said to be planar if it is possible to draw it in such a way that the
edges intersect only at their end points (the vertices). Such a drawing is also called
a planar diagram for G or a planar embedding of G. Indeed, it is possible to think of
such a drawing—call it G̃—as a graph isomorphic to G. Recall our original definition
of a graph: it involved only a vertex set V and a set E of pairs of vertices. Take the
vertex set of G̃ to be the set of end points of the arcs in the drawing and say that
the edge set consists of pairs made up of the two of end points of each arc.

15.1.1 The topology of curves in the plane
To give a clear treatment of this topic, it’s helpful to use some ideas from plane
topology. That takes us outside the scope of this module and so, in this subsection,
I’ll give some definitions and state one main result without proof. If you find this
material interesting (and it is pretty interesting, as well as beautiful and useful) you
might consider doing MATH31052, Topology.
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Definition 15.1. A curve in the plane is a continuous image of the unit interval.
That is, a curve is a set of points

C =
{
γ(t) ∈ R2 | 0 ≤ t ≤ 1

}
traced out as t varies across the closed unit interval. Here γ(t) = ((x(t), y(t)), where
x(t) : [0, 1] → R and y(t) : [0, 1] → R are continuous functions. If the curve does
not intersect itself (that is, if γ(t1) = γ(t2) ⇒ t1 = t2) then it is a simple curve.

Definition 15.2. A closed curve is a continuous image of the unit circle or,
equivalently, a curve in which γ(0) = γ(1). If a closed curve doesn’t intersect itself
anywhere other than at γ(0) = γ(1), then it is a simple closed curve.

Figure 15.1 and Table 15.1 give examples of these two definitions, while the
following one, which is illustrated in Figure 15.2, sets the stage for this section’s key
result.

Figure 15.1: From left to right: γ1, a simple curve; γ2, a curve that has an
intersection, so is not simple; γ3, a simple closed curve and γ4, a closed curve with
an intersection. Explicit formulae for the curves and their intersections appear in
Table 15.1.

Definition 15.3. A set S ⊂ R2 is arcwise-connected if, for every pair of points
x, y ∈ S, there is a curve γ(t) : [0, 1] → S with γ(0) = x and γ(1) = y.

Theorem 15.4 (The Jordan Curve Theorem). A simple closed curve C in the plane
divides the rest of the plane into two disjoint, arcwise-connected, open sets. These
two open sets are called the interior and exterior of C, often denoted Int(C) and
Ext(C), and any curve joining a point x ∈ Int(C) to a point y ∈ Ext(C) intersects
C at least once.

This is illustrated in Figure 15.3.



Curve x(t) y(t)
γ1(t) 2t 24t3 − 36t2 + 14t− 1
γ2(t) 24t3 − 36t2 + 14t− 1 8t2 − 8t+ 1
γ3(t) cos(2πt) sin(2πt)
γ4(t) sin(4πt) sin(2πt)

Table 15.1: Explicit formulae for the curves appearing in Figure 15.1. The
intersection in γ2 occurs at γ2
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Figure 15.2: The two shaded regions below are, individually, arcwise connected,
but their union is not: any curve connecting x to y would have to pass outside the
shaded regions.
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Figure 15.3: An illustration of the Jordan Curve Theorem.



2 faces
3 vertices
3 edges

3 faces
4 vertices
5 edges

1 (infinite) face
4 vertices
3 edges

6 faces
8 vertices
12 edges

Figure 15.4: Four examples of planar graphs, with numbers of faces, vertices and
edges for each.

15.1.2 Faces of a planar graph
The definitions in the previous section allow us to be a bit more formal about the
definition of a planar graph:

Definition 15.5. A planar diagram for a graph G(V,E) with edge set E =
{e1, . . . , em} is a collection of simple curves {γ1, . . . , γm} that represent the edges
and have the property that the curves γj and γk corresponding to two distinct edges
ej and ek intersect if and only if the two edges are incident on the same vertex and,
in this case, they intersect only at the endpoints that correspond to their common
vertex.

Definition 15.6. A graph G is planar if and only if it has a planar diagram.

If a planar graph G contains cycles then the curves that correspond to the edges
in the cycles link together to form simple closed curves that divide the plane into
finitely many disjoint open sets called faces. Even if the graph has no cycles, there
will still be one infinite face: see Figure 15.4.

15.2 Euler’s formula for planar graphs
Our first substantive result about planar graphs is:

Theorem 15.7 (Euler’s formula). If G(V,E) is a connected planar graph with
n = |V | vertices and m = |E| edges, then any planar diagram for G has f = 2+m−n
faces.

Before giving a full proof, we begin with an easy special case:

Lemma 15.8 (Euler’s formula for trees). If G(V,E) is a tree then f = 2 +m− n.



G

e

G´ = G \ e

Figure 15.5: Deleting the edge e causes two adjacent faces in G to merge into a
single face in G′.

Proof of the lemma about trees: As G is a tree we know m = n− 1, so
2 +m− n = 2 + (n− 1)− n = 2− 1 = 1 = f,

where the last equality follows because every planar diagram for a tree has only a
single, infinite face.

Proof of Euler’s formula in the general case: We’ll prove the result for arbitrary con-
nected planar graphs by induction on m, the number of edges.

Base case The smallest connected planar graph contains only a single vertex, so
has n = 1, m = 0 and f = 1. Thus

2 +m− n = 2 + 0− 1 = 1 = f

just as Euler’s formula demands.

Inductive step Suppose the result is true for all m ≤ m0 and consider a connected
planar graph G(V,E) with |E| = m = m0 + 1 edges. Also suppose that G
has n vertices and a planar diagram with f faces. Then one of the following
things is true:

• G is a tree, in which case Euler’s formula is true by the lemma proved
above;

• G contains at least one cycle.

If G contains a cycle, choose an edge e ∈ E that’s part of that cycle and form
G′ = G\e, which has m′ = m0 edges, n′ = n vertices and f ′ = f − 1 faces.
This last follows because breaking a cycle merges two adjacent faces, as is
illustrated in Figure 15.5.
As G′ has only m0 edges, we can use the inductive hypothesis to say that
f ′ = m′ −n′ +2. Then, again using unprimed symbols for quantities in G, we
have:

f ′ = m′ − n′ + 2

f − 1 = m0 − n+ 2

f = (m0 + 1)− n+ 2

f = m− n+ 2,

which establishes Euler’s formula for graphs that contain cycles.



Figure 15.6: Planar graphs with the maximal number of edges for a given number
of vertices. The graph with the yellow vertices has n = 5 and m = 9 edges, while
those with the blue vertices have n = 6 and m = 12

15.3 Planar graphs can’t have many edges
To set the scene for our next result, consider graphs on n ∈ {1, 2, . . . , 5} vertices
and, for each n, try to draw a planar graph with as many edges as possible. At first
this is easy: it’s possible to find a planar diagram for each of the complete graphs
K1, K2, K3 and K4, but, as we will prove below, K5 is not planar and the the best
one can do is to find a planar graph with n = 5 and m = 9. For n = 6 there
are two non-isomorphic planar graphs with m = 12 edges, but none with m ≥ 12.
Figure 15.6 shows examples of planar graphs having the maximal number of edges.

Larger planar graphs (those with n ≫ 5) tend to be even sparser, which means
that they have many fewer edges than they could. The relevant comparison for a
graph on n vertices is n(n − 1)/2, the number of edges in the complete graph Kn,
so we’ll say that a graph is sparse if

|E| ≪ n(n− 1)

2
or s ≡ |E|

n(n− 1)/2
≪ 1 (15.1)

Table 15.2 makes it clear that when n > 5 the planar graphs become increasingly
sparse1.

15.3.1 Preliminaries: bridges and girth
The next two definitions will help us to formulate and prove our main result, a
somewhat technical theorem that gives a precise sense to the intuition that a planar
graph can’t have very many edges.

Definition 15.9. An edge e in a connected graph G(V,E) is a bridge if the graph
G′ = G\e formed by deleting e has more than one connected component.

Definition 15.10. If a graph G(V,E) contains one or more cycles then the girth
of G is the length of a shortest cycle.

These definitions are illustrated in Figures 15.7 and 15.8.
1I wrote software to compute the first few rows of this table myself, but got the counts for n > 9

from the On-Line Encyclopedia of Integer Sequences, entries A003094 and A001349.

http://oeis.org/A003094
http://oeis.org/A001349


Number of non-isomorphic, connected graphs that are . . .
n mmax s planar, with m = mmax planar planar or not
5 9 0.9 1 20 21
6 12 0.8 2 99 112
7 15 0.714 5 646 853
8 18 0.643 14 5,974 11,117
9 21 0.583 50 71,885 261,080
10 24 0.583 ? 1,052,805 11,716,571
11 27 0.533 ? 17,449,299 1,006,700,565
12 30 0.491 ? 313,372,298 164,059,830,476

Table 15.2: Here mmax is the maximal number of edges appearing in a planar
graph on the given number of vertices, while the column labelled s lists the measure
of sparsity given by Eqn. 15.1 for connected, planar graphs with mmax edges. The
remaining columns list counts of various kinds of graphs and make the point that as
n increases, planar graphs with m = mmax become rare in the set of all connected
planar graphs and that this family itself becomes rare in the family of connected
graphs.

In a tree, every
edge is a bridge.

The blue edge
below is a

bridge

A cycle
contains no
bridges

Figure 15.7: Several examples of bridges in graphs.



Girth is 3

Girth is 4

Figure 15.8: The girth of a graph is the length of a shortest cycle.

Remark 15.11. A graph with n vertices has girth in the range 3 ≤ g ≤ n. The
lower bound arises because all cycles include at least three edges and the upper one
because the longest possible cycle occurs when G is isomorphic to Cn.

15.3.2 Main result: an inequality relating n and m

We are now in a position to state our main result:

Theorem 15.12 (Jungnickel’s 1.5.3). If G(V,E) is a connected planar graph with
n = |V | vertices and m = |E| edges then either:

A: G is acyclic and m = n− 1;

B: G has at least one cycle and so has a well-defined girth g. In this case

m ≤ g(n− 2)

g − 2
. (15.2)

Outline of the Proof. We deal first with the case where G is acyclic and then move
on to the harder, more general case:

A: G is connected, so if it has no cycles it’s a tree and we’ve already proved (see
Theorem 6.13) that trees have m = n− 1.

B: When G contains one or more cycles, we’ll prove the inequality 15.2 mainly
by induction on n, but we’ll need several sub-cases. To see why, let’s plan out
the argument.
Base case: n = 3
There is only a single graph on three vertices that contains a cycle, it’s K3,



which has girth g = 3 and n = 3, so our theorem says

m ≤ g(n− 2)

g − 2

≤ 3× (3− 2)

3− 2

≤ 3

which is obviously true.

Inductive hypothesis:
Assume the result is true for all connected, planar graphs that contain a cycle
and have n ≤ n0 vertices.

Inductive step:
Now consider a connected, planar graph G(V,E) with n0 + 1 vertices that
contains a cycle. We need, somehow, to reduce this graph to one for which we
can exploit the inductive hypothesis and so one naturally thinks of deleting
something. This leads to two main sub-cases, which are illustrated2 below.

B.1 G contains at least one bridge. In this case the road to a proof by in-
duction seems clear: we’ll delete the bridge and break G into two smaller
graphs.

B.2 G does not contains any bridges. Equivalently, every edge in G is part
of some cycle. Here it’s less clear how to handle the inductive step and
so we will use an altogether different, non-inductive approach.

We’ll deal with these cases in turn, beginning with B.1.
As mentioned above, a natural approach is to delete a bridge and break G into
two smaller graphs—say, G1(V1, E1) and G2(V2, E2)—then apply the inductive

2The examples illustrating cases B.1 and B.2 are meant to help the reader follow the argument,
but are not part of the logic of the proof.



hypothesis to the pieces. If we define nj = |Vj| to be the number of vertices
in Gj and mj = |Ej| to be the corresponding number of edges, then we know

n1 + n2 = n and m1 +m2 = m− 1. (15.3)

But we need to take a little care as deleting a bridge leads to two further sub-
cases and we’ll need a separate argument for each. Given that the original
graph G contained at least one cycle—and noting that removing a bridge
can’t break a cycle—we know that at least one of the two pieces G1 and G2

contains a cycle. Our two sub-cases are thus:

B.1a Exactly one of the two pieces contains a cycle. We can assume without
loss of generality that it’s G2, so that G1 is a tree.

B.1b Both G1 and G2 contain cycles.

Thus we can complete the proof of Theorem 15.12 by producing arguments
(full details below) that cover the following three possibilities

B.1a G contains a bridge and at least one cycle. Deleting the bridge leaves
two subgraphs, a tree G1 and a graph, G2, that contains a cycle: we
handle this possibility in Case 15.13 below.

B.1b G contains a bridge and at least two cycles. Deleting the bridge leaves
two subgraphs, G1 and G2, each of which contains at least one cycle: see
Case 15.14.

B.2 G contains one or more cycles, but no bridges: see Case 15.15.



15.3.3 Gritty details of the proof of Theorem 15.12
Before we plunge into the Lemmas, it’s useful to make a few observations about the
ratio g/(g − 2) that appears in Eqn. (15.2). Recall (from Remark 15.11) that if a
graph on n vertices contains a cycle, then the girth is well-defined and lies in the
range 3 ≤ g ≤ n.

• For g > 2, the ratio g/(g − 2) is a monotonically decreasing function of g and
so

g1 > g2 ⇒
(

g1
g1 − 2

)
<

(
g2

g2 − 2

)
. (15.4)

• The monotonicity of g/(g − 2), combined with the fact that g ≥ 3, implies
that g/(g − 2) is bounded from above by 3:

g ≥ 3 ⇒
(

g

g − 2

)
≤

(
3

3− 2

)
= 3. (15.5)

• And at the other extreme, g/(g − 2) is bounded from below (strictly) by 1:

g ≤ n ⇒
(

g

g − 2

)
≥

(
n

n− 2

)
> 1. (15.6)

The three cases

The cases below are all part of an inductive argument in which, G(V,E) is a con-
nected planar graph with |V | = n0 + 1 and |E| = m. It also contains at least one
cycle and so has a well-defined girth, g. Finally, we have an inductive hypothesis
saying that Theorem 15.12 holds for all trees and for all connected planar graphs
with |V | ≤ n0.

Case 15.13 (Case B.1a of Theorem 15.12). Here G contains a bridge and deleting
this bridge breaks G into two connected planar, subgraphs, G1(V1, E1) and G2(V2, E2),
one of which is a tree.

Proof. We can assume without loss that G1 is the tree and then argue that every
cycle that appears in G is also in G2 (we’ve only deleted a bridge), so the girth of
G2 is still g. Also, n1 ≥ 1, so n2 ≤ n0 and, by the inductive hypothesis, we have

m2 ≤ g(n2 − 2)

g − 2
.

But then, because G1 is a tree, we know that m1 = n1 − 1. Adding this to both
sides of the inequality yields

m1 +m2 ≤ (n1 − 1) +
g(n2 − 2)

g − 2



or, equivalently,
m1 +m2 + 1 ≤ n1 +

g(n2 − 2)

g − 2
.

Finally, noting that m = m1 +m2 + 1, we can say

m ≤ n1 +
g(n2 − 2)

g − 2

≤
(

g

g − 2

)
n1 +

g(n2 − 2)

g − 2

≤ g(n1 + n2 − 2)

g − 2

≤ g(n− 2)

g − 2
,

which is the result we sought. Here the step from the first line to the second follows
because 1 < g/(g − 2) (recall Eqn. (15.6)), so

n1 <

(
g

g − 2

)
n1

and the last line follows because n = n1 + n2.

Case 15.14 (Case B.1b of Theorem 15.12). This case is similar to the previous one
in that here again G contains a bridge, but in this case deleting the bridge breaks G
into two connected planar, subgraphs, each of which contains at least one cycle (and
so has a well defined-girth).

Proof. We’ll say that G1 has girth g1 and G2 has girth g2 and note that, as the girth
is defined as the length of a shortest cycle—and as every cycle that appears in the
original graph G must still be present in one of the Gj—we know that

g ≤ g1 and g ≤ g2. (15.7)

Now, n = n0 + 1 and n = n1 + n2 so as we know that nj ≥ 3 (the shortest
possible cycle is of length 3 and the Gj contain cycles), it follows that we have both
n1 < n0 and n2 < n0. This means that the inductive hypothesis applied to both Gj

and so we have

m1 ≤
g1(n1 − 2)

g1 − 2
and m2 ≤

g2(n2 − 2)

g2 − 2
.

Adding these together yields:

m1 +m2 ≤
g1(n1 − 2)

g1 − 2
+

g2(n2 − 2)

g2 − 2

≤ g(n1 − 2)

g − 2
+

g(n2 − 2)

g − 2

≤ g(n1 + n2 − 4)

g − 2
,



where the step from the first line to the second follows from Eqn. 15.7 and the
monotonicity of the ratio g/(g − 2) (recall Eqn. (15.4)). If we again note that
1 < g/(g − 2) we can conclude that

m1 +m2 + 1 ≤ g(n1 + n2 − 4)

g − 2
+ 1

≤ g(n1 + n2 − 4)

g − 2
+

g

g − 2

≤ g(n1 + n2 − 3)

g − 2

and so
m = m1 +m2 + 1 ≤ g(n1 + n2 − 3)

g − 2
≤ g(n1 + n2 − 2)

g − 2

or, as n = n1 + n2,
m ≤ g(n− 2)

g − 2
,

which is the result we sought.

Case 15.15 (Case B.2 of Theorem 15.12). In the final case G(V,E) does not contain
any bridges, which implies that every edge in E is part of some cycle. This makes it
harder to see how to use the inductive hypothesis (we’d have to delete two or more
edges to break G into disconnected pieces . . . ) and so we will use an entirely different
argument based on Euler’s Formula (Theorem 15.7).

Proof. First, define fj to be the number of faces whose boundary has j edges, making
sure to include the infinite face: Figures 15.9 illustrates this definition. Then, as
each edge appears in the boundary of exactly two faces we have both

n∑
j=g

fj = f and
n∑

j=g

j × fj = 2m.

Note that both sums start at g, the girth, as we know that there are no cycles of
shorter length. But then

2m =
n∑

j=g

j × fj ≥
n∑

j=g

g × fj = g

n∑
j=g

fj = gf,

where we obtain the inequality by replacing the length of the cycle j in j × fj with
g, the length of the shortest cycle (and hence the smallest value of j for which fj is
nonzero). Thus we have

2m ≥ gf or f ≤ 2m/g.

If we now use Euler’s Theorem to say that f = m− n+ 2, we have

m− n+ 2 ≤ 2m

g
or m− 2m

g
≤ n− 2.



f3 = 2 f4 = 2

f5 = 1 f9 = 1

Figure 15.9: The example used to illustrate case B.2 of Theorem 15.12 has f3 = 2,
f4 = 2, f5 = 1 and f9 = 1 (for the infinite face): all other fj are zero.

And then, finally,

gm

g
− 2m

g
≤ n− 2 so (g − 2)m

g
≤ n− 2 and m ≤ g(n− 2)

g − 2

which is the result we sought.

15.3.4 The maximal number of edges in a planar graph
Theorem 15.12 has an easy corollary that gives a simple bound on the maximal
number of edges in a graph with |V | = n.

Corollary 15.16. If G(V,E) is a connected planar graph with n = |V | ≥ 3 vertices
and m = |E| edges then m ≤ 3n− 6.

Proof. Either G is a tree, in which case m = n− 1 and the bound in the Corollary
is certainly satisfied, or G contains at least one cycle. In the latter case, say that
the girth of G is g. We know 3 ≤ g ≤ n and our main result says

m ≤
(

g

g − 2

)
(n− 2).

Thus, recalling that g/(g − 2) ≤ 3, the result follows immediately.



Figure 15.10: Both K5 and K3,3 are non-planar.

15.4 Two non-planar graphs
The hard-won inequalities from the previous section—which both say something like
“G planar implies m small”—cannot be used to prove that a graph is planar3, but
can help establish that a graph isn’t. The idea is to use the contrapositives, which
are statements like “If m is too big, then G can’t be planar.”

To illustrate this, we’ll use our inequalities to prove that neither of the graphs in
Figure 15.10—K5 at left and K3,3 at right—is planar. Let’s begin with K5: it has
n = 5 so Corollary 15.16 says that if it is planar,

m ≤ 3n− 6 = 3× 5− 6 = 15− 6 = 9,

but K5 actually has m = 10 edges, which is one too many for a planar graph. Thus
K5 can’t have a planar diagram.

K3,3 isn’t planar either, but Corollary 15.16 isn’t strong enough to establish
this. K3,3 has n = 6 and m = 3 × 3 = 9. Thus it easily satisfies the bound from
Corollary 15.16, which requires only that m ≤ 3× 6− 6 = 12. But if we now apply
our main result, Theorem 15.12, we’ll see that K3,3 can’t be planar. The relevant
inequality is

m ≤ g(n− 2)

g − 2

≤ 4× (6− 2)

4− 2

≤ 16

2
≤ 8

where, in passing from the first line to the second, I’ve used the fact that the girth
of K3,3 is g = 4. To see this, first note that any cycle in a bipartite graph has even

3There is an O(n) algorithm that determines whether a graph on n vertices is planar and, if
it is, produces a planar diagram. We don’t have time to discuss it, but interested readers might
like to look at John Hopcroft and Robert Tarjan (1974), Efficient Planarity Testing, Journal of the
ACM, 21(4):549–568. DOI: 10.1145/321850.321852

http://dx.doi.org/10.1145/321850.321852


Figure 15.11: Knowing that K5 and K3,3 are non-planar makes it clear that these
two graphs can’t be planar either, even though neither violates the inequalities from
the previous section (check this).

length, so the shortest possible cycle in K3,3 has length 4, and then find such a cycle
(there are lots).

Once we know that K3,3 and K5 are nonplanar, we can see immediately that
many other graphs must be non-planar too, even when this would not be detected
by either of our inequalities: Figure 15.11 shows two such examples. The one on the
left has K5 as a subgraph, so even though it satisfies the bound from Theorem 15.12,
it can’t be planar. The example at right is similar in that any planar diagram for this
graph would obviously produce a planar diagram for K3,3, but the sense in which
this second graph “contains” K3,3 is more subtle: we’ll clarify and formalise this in
the next section, then state a theorem that says, essentially, that every non-planar
graph contains K5 or K3,3.

15.5 Kuratowski’s Theorem
We begin with a pair of definitions designed to capture the sense in which the graph
at right in Figure 15.11 contains K3,3.
Definition 15.17. A subdivision of a graph G(V,E) is a graph H(V ′, E ′) formed
by (perhaps repeatedly) removing an edge e = (a, b) ∈ E from G and replacing it
with a path

{(a, v1), (v1, v2), . . . , (vk, b)}
containing of some number k > 0 of new vertices {v1, . . . , vk}, each of which has
degree 2.

Figure 15.12 shows a couple examples of subdivisions, including one at left that
gives an indication of where the name comes from: the extra vertices can be thought
of as dividing an existing edge into smaller ones.
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Figure 15.12: H at right is a subdivision of G. The connection between b and d,
which was a single edge in G, becomes a blue path in H: one can imagine that the
original edge (b, d) has had three new, white vertices inserted into it, “sub-dividing”
it. The other deleted edge, (i, j) is shown as a pale grey, dashed line (to indicate
that it’s not part of H), while the new path that replaces it is again shown in blue
and white.

Definition 15.18. Two graphs G1(V1, E1) and G2(V2, E2) are said to be homeo-
morphic if they are isomorphic to subdivisions of the same graph.

That is, we say G1 and G2 are homeomorphic if there is some third graph—call
it G0—such that both G1 and G2 are subdivisions of G0. Figure 15.13 shows several
graphs that are homeomorphic to K5. Homeomorphism is an equivalence relation
on graphs4 and so all the graphs in Figure 15.13 are homeomorphic to each other as
well as to K5.

The notion of homeomorphism allows us to state the following remarkable result:

Theorem 15.19 (Kuratowski’s Theorem (1930)). A graph G is planar if and only
if it does not contain a subgraph homeomorphic to K5 or K3,3.

Figure 15.13: These three graphs are homeomorphic to K5, and hence also to each
other.

4The keen reader should check this for herself.



Figure 15.14: The two-torus cut twice and flattened into a square.

15.6 Afterword
The fact that there are, in a natural sense, only two non-planar graphs is one of the
main reasons we study the topic. But this turns out to be the easiest case of an even
more amazing family of results that I’ll discuss briefly. These other theorems have
to do with drawing graphs on arbitrary surfaces (spheres, tori . . . )—it’s common
to refer to this as embedding the graph in the surface—and the process uses curves
similar to those discussed in Section 15.1.1, except that now we want, for example,
curves γ : [0, 1] → S2, where S2 is the two-sphere, the surface of a three-dimensional
unit ball.

Embedding a graph in the sphere turns out to be the same as embedding it in
the plane: you can imagine drawing the planar diagram on a large, thin, stretchy
sheet and then smoothing it onto a big ball in such a way that the diagram lies in
the northern hemisphere while the edges of the sheet are all drawn together in a
bunch at the south pole. Similarly, if we had a graph embedded in the sphere we
could get a planar diagram for it by punching a hole in the sphere. Thus a graph
can be embedded in the sphere unless it contains—in the sense of Kuratowski’s
Theorem—a copy of K5 or K3,3. For this reason, these two graphs are called topo-
logical obstructions to embedding a graph in the plane or sphere. They are also
sometimes referred to as forbidden subgraphs.

But if we now consider the torus, the situation for K5 and K3,3 is different. To
make drawings, I’ll use a standard representation of the torus as a square: you should
imagine this square to have been peeled off a more familiar torus-as-a-doughnut, as
illustrated in Figure 15.14. Figure 15.15 then shows embeddings of K5 ad K3,3 in
the torus—these are analogous to planar diagrams in that the arcs representing the
edges don’t intersect except at their endpoints.

There are, however, graphs that one cannot embed in the torus and there is
even an analog of Kuratowski’s Theorem that says that there are finitely many
forbidden subgraphs and that all non-toroidal5 graphs include at least one of them.
In fact, something even more spectacular is true: early in an epic series6 of papers,

5By analogy with the term non-planar, a graph is said to be non-toroidal if it cannot be
embedded in the torus.

6The titles all begin with the words “Graph Minors”. The series began in 1983 with
“Graph Minors. I. Excluding a forest” (DOI: 10.1016/0095-8956(83)90079-5) and seems

http://dx.doi.org/10.1016/0095-8956(83)90079-5


Figure 15.15: Embeddings of K5 (left) and K3,3 (right) in the torus. Edges that
run off the top edge of the square return on the bottom, while those that run off the
right edge come back on the left.

Figure 15.16: Neither of these graphs can be embedded in the two-torus.
These examples come from Andrei Gargarin, Wendy Myrvold and John Chambers
(2009), The obstructions for toroidal graphs with no K3,3’s, Discrete Mathematics,
309(11):3625–3631. DOI: 10.1016/j.disc.2007.12.075

Neil Robertson and Paul D. Seymour proved that every surface (the sphere, the
torus, the torus with two holes. . . ) has a Kuratowski-like theorem with a finite list
of forbidden subgraphs: two of those for the torus are shown in Figure 15.16. One
shouldn’t, however, draw too much comfort from the word “finite”. In her recent MSc
thesis7 Ms. Jennifer Woodcock developed a new algorithm for embedding graphs in
the torus and tested it against a database that, although known to be incomplete,
includes 239,451 forbidden subgraphs.

to have concluded with “Graph Minors. XXIII. Nash-Williams’ immersion conjecture” in
2010 (DOI: 10.1016/j.jctb.2009.07.003). The result about embedding graphs in surfaces
appeared in 1990 in “Graph Minors. VIII. A Kuratowski theorem for general surfaces”
(DOI: 10.1016/0095-8956(90)90121-F).

7Ms. Woodcock’s thesis, A Faster Algorithm for Torus Embedding, is lovely and is the
source of much of the material in this section.

http://dx.doi.org/10.1016/j.disc.2007.12.075
http://dx.doi.org/10.1016/j.jctb.2009.07.003
http://dx.doi.org/10.1016/0095-8956(90)90121-F
https://dspace.library.uvic.ca/bitstream/handle/1828/130/jwoodcock_thesis.pdf;sequence=1
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