Lecture 1

First Steps in Graph Theory

This lecture introduces Graph Theory, the main subject of the course, and includes
some basic definitions as well as a number of standard examples.

Reading: Some of the material in today’s lecture comes from the beginning of
Chapter 1 in

Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition,
which is available online via SpringerLink.

If you are at the university, either physically or via the VPN, you can download the
chapters of this book as PDFs.

1.1 The Konigsberg Bridge Problem

Graph theory is usually said to have been invented in 1736 by the great Leon-
hard Euler, who used it to solve the Konigsberg Bridge Problem. I used to find this
hard to believe—the graph-theoretic graph is such a natural and useful abstraction
that it’s difficult to imagine that no one hit on it earlier—but Euler’s paper about
graphs® is generally acknowledged® as the first one and it certainly provides a sat-
isfying solution to the bridge problem. The sketch in the left panel of Figure
comes from Euler’s original paper and shows the main features of the problem. As
one can see by comparing Figures and [1.2, even this sketch is already a bit of
an abstraction.

The question is, can one make a walking tour of the city that (a) starts and
finishes in the same place and (b) crosses every bridge exactly once. The short
answer to this question is “No” and the key idea behind proving this is illustrated in
the right panel of Figure [L.1. Tt doesn’t matter what route one takes while walking
around on, say, the smaller island: all that really matters are the ways in which
the bridges connect the four land masses. Thus we can shrink the small island to a

L. Euler (1736), Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae
Scientiarum Imperialis Petropolitanae 8, pp. 128-140.

2See, for example, Robin Wilson and John J. Watkins (2013), Combinatorics: Ancient &
Modern, OUP. ISBN 978-0-19-965659-2.
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Figure 1.1: The panel at left shows the seven bridges and four land masses
that provide the setting for the Konigsberg bridge problem, which asks whether it is
possible to make a circular walking tour of the city that crosses every bridge exactly
once. The panel at right includes a graph-theoretic abstraction that helps one prove
that no such tour exists.

Figure 1.2:  Konigsberg is a real place—a port on the Baltic—and during Fuler’s
lifetime it was part of the Kingdom of Prussia. The panel at left is a bird’s-eye view
of the city that shows the celebrated seven bridges. It was made by Matthdus Merian
and published in 1652. The city is now called Kaliningrad and is part of the Russian
Federation. It was bombed heavily during the Second World War: the panel at right
shows a recent satellite photograph and one can still recognize the two islands and
modern versions of some of the bridges, but very little else appears to remain.

point—and do the same with the other island, as well as with the north and south
banks of the river—and then connect them with arcs that represent the bridges.
The problem then reduces to the question whether it is possible to draw a path that
starts and finishes at the same dot, but traces each of over the seven arcs exactly
once.

One can prove that such a tour is impossible by contradiction. Suppose that
one exists: it must then visit the easternmost island (see Figure [1.3) and we are
free to imagine that the tour actually starts there. To continue we must leave the
island, crossing one of its three bridges. Then, later, because we are required to
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Figure 1.3:  The Kénigsberg Bridge graph on its own: it is not possible to trace a
path that starts and ends on the eastern island without crossing some bridge at least
twice.

cross each bridge exactly once, we will have to return to the eastern island via a
different bridge from the one we used when setting out. Finally, having returned
to the eastern island once, we will need to leave again in order to cross the island’s
third bridge. But then we will be unable to return without recrossing one of the
three bridges. And this provides a contradiction: the walk is supposed to start and
finish in the same place and cross each bridge exactly once.

1.2 Definitions: graphs, vertices and edges

The abstraction behind Figure turns out to be very powerful: one can draw
similar diagrams to represent “connections” between “things” in a very general way.
Examples include: representations of social networks in which the points are people
and the arcs represent acquaintance; genetic regulatory networks in which the points
are genes and the arcs represent activation or repression of one gene by another and
scheduling problems in which the points are tasks that contribute to some large
project and the arcs represent interdependence among the tasks. To help us make
more rigorous statements, we’ll use the following definition:

Definition 1.1. A graph is a finite, nonempty set V', the vertex set, along with
a set E, the edge set, whose elements e € E are pairs e = (a,b) with a,b € V.

We will often write G(V, E) to mean the graph G with vertex set V' and edge
set E. An element v € V is called a vertex (plural vertices) while an element e € E
is called an edge.

The definition above is deliberately vague about whether the pairs that make
up the edge set E are ordered pairs—in which case (a,b) and (b,a) with a # b are
distinct edges—or unordered pairs. In the unordered case (a,b) and (b, a) are just
two equivalent ways of representing the same pair.

Definition 1.2. An undirected graph is a graph in which the edge set consists of
unordered pairs.
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Figure 1.4: Diagrams representing graphs with vertex set V- = {a,b} and edge
set E = {(a,b)}. The diagram at left is for an undirected graph, while the one at
right shows a directed graph. Thus the arrow on the right represents the ordered pair

(a,b).

Definition 1.3. A directed graph is a graph in which the edge set consists of
ordered pairs. The term “directed graph” is often abbreviated as digraph.

Although graphs are defined abstractly as above, it’s very common to draw
diagrams to represent them. These are drawings in which the vertices are shown
as points or disks and the edges as line segments or arcs. Figure illustrates the
graphical convention used to mark the distinction between directed and undirected
edges: the former are drawn as line segments or arcs, while the latter are shown as
arrows. A directed edge e = (a, b) appears as an arrow that points from a to b.

Sometimes one sees graphs with more than one edge® connecting the same two
vertices; the Konigsberg Bridge graph is an example. Such edges are called multiple
or parallel edges. Additionally, one sometimes sees graphs with edges of the form
e = (v,v). These edges, which connect a vertex to itself, are called loops or self
loops. All these terms are illustrated in Figure .

Figure 1.5: A graph whose edge set includes the self loop (vy, v1) and two parallel
copies of the edge (vy, vo).

It is important to bear in mind that diagrams such as those in Figures
are only illustrations of the edges and vertices. In particular, the arcs representing
edges may cross, but this does not necessarily imply anything: see Figure [1.6.

Remark. In this course when we say “graph” we will normally mean an undirected
graph that contains no loops or parallel edges: if you look in other books you may

3In this case it is a slight abuse of terminology to talk about the edge “set” of the graph, as sets
contain only a single copy of each of their elements. Very scrupulous books (and students) might
prefer to use the term edge list in this context, but I will not insist on this nicety.



Figure 1.6: Two diagrams for the same graph: the crossed edges in the leftmost
versiton do not signify anything.

see such objects referred to as simple graphs. By contrast, we will refer to a graph
that contains parallel edges as a multigraph.

Definition 1.4. Two vertices a # b in an undirected graph G(V, E) are said to be
adjacent or to be neighbours if (a, b) € E. In this case we also say that the edge
e = (a,b) is incident on the vertices a and b.

Definition 1.5. If the directed edge e = (u,v) is present in a directed graph
H(V',E") we will say that u is a predecessor of v and that v is a successor
of u. We will also say that u is the tail or tail vertex of the edge (u,v), while v is
the tip or tip vertex.

1.3 Standard examples

In this section I'll introduce a few families of graphs that we will refer to throughout
the rest of the term.

The complete graphs K,

The complete graph K, is the undirected graph on n vertices whose edge set includes
every possible edge. If one numbers the vertices consecutively the edge and vertex
set are

V =Av, vg, ..., vn}
E={(vj,n)|1<j<(n—1),((+1) <k<n}.

= (5) =M

edges in total: see Figure @ for the first few examples.

There are thus

The path graphs P,

These graphs are formed by stringing n vertices together in a path. The word “path”
actually has a technical meaning in graph theory, but you needn’t worry about that
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Figure 1.7:  The first five members of the family K, of complete graphs.
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Figure 1.8: Diagrams for the path graphs Py and Ps.

today. P, has vertex and edge sets as listed below,

V:{’Ul,’Ug, ...,’Un}
E={(vj,vj1)|1<j<n},

and Figure @ shows two examples.

The cycle graphs C),

The cycle graph C,, sometimes also called the circuit graph, is a graph in which
n > 3 vertices are arranged in a ring. If one numbers the vertices consecutively the
edge and vertex set are

V:{’Ul,’l)g,...,vn}

E = {(Ul,Ug), (Ug,’l)g), ey (Uj7vj+1); ce (Un—lavn); (Un,'l)l)} .

C,, has n edges that are often written (vj,v;41), where the subscripts are taken to
be defined periodically so that, for example, v, 11 = v;. See Figure for examples.

B

Figure 1.9:  The first three members of the family C,, of cycle graphs.




The complete bipartite graphs K, ),

The complete bipartite graph K,, , is a graph whose vertex set is the union of a set V
of m vertices with second set V5 of n different vertices and whose edge set includes
every possible edge running between these two subsets:

V=Vul
={u, ..., U} U{vg, ..., v, }
E={(u,v)|ueVy,vely}.
K, thus has |E| = mn edges: see Figure for examples.

K K K
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Figure 1.10: A few members of the family K,,, of complete bipartite graphs.
Here the two subsets of the vertex set are illustrated with colour: the white vertices
constitute Vi, while the red ones form Vs.

There are other sorts of bipartite graphs too:

Definition 1.6. A graph G(V, E) is said to be a bipartite graph if
e it has a nonempty edge set: E # () and

e its vertex set 'V can be decomposed into two nonempty, disjoint subsets
V=V1uV, with ViNnVo=0 and Vi #0 and Vy #

in such a way that all the edges (u,v) € E contain a member of Vi and a
member of V.

The cube graphs I,

These graphs are specified in a way that’s closer to the purely combinatorial, set-
theoretic definition of a graph given above. I, the d-dimensional cube graph, has
vertices that are strings of d zeroes or ones, and all possible labels occur. Edges
connect those vertices whose labels differ in exactly one position. Thus, for example,
15 has vertex and edge sets

VvV =400, 01, 10, 11} and E ={(00,01), (00,10), (01,11), (10,11)}.
Figure shows diagrams for the first few cube graphs and these go a long way
toward explaining the name. More generally, I; has vertex and edge sets given by
V={wlwe{0,1}"}
FE = {(w,w) |w and v’ differ in a single position} .
This means that I; has |V| = 2¢ vertices, but it’s a bit harder to count the edges.

In the last part of today’s lecture we’ll prove a theorem that enables one to show
that I has |E| = d2¢7! edges.
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Figure 1.11: The first three members of the family I; of cube graphs. Notice
that all the cube graphs are bipartite (the red and white vertices are the two disjoint
subsets from Definition ), but that, for example, I3 is not a complete bipartite
graph.

1.4 A first theorem about graphs

I find it wearisome to give, or learn, one damn definition after another and so I'd
like to conclude the lecture with a small, but useful theorem. To do this we need
one more definition:

Definition 1.7. In an undirected graph G(V, E) the degree of a vertex v € V is
the number of edges that include the vertex. One writes deg(v) for “the degree of v”.

So, for example, every vertex in the complete graph K,, has degree n — 1, while
every vertex in a cycle graph C,, has degree 2; Figure [1.12 provides more examples.
The generalization of degree to directed graphs is slightly more involved. A vertex v
in a digraph has two degrees: an in-degree that counts the number of edges having
v at their tip_ and an out-degree that counts number of edges having v at their tail.
See Figure for an example.
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Figure 1.12: The degrees of the vertices in a small graph. Note that the graph
consists of two “pieces”.
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Figure 1.13:  The degrees of the vertices in a small digraph.

Once we have the notion of degree, we can formulate our first theorem:

Theorem 1.8 (Handshaking Lemma, Euler 1736). If G(V, E) is an undirected graph
then
> " deg(v) =2|E|. (1.1)
veV

Proof. Each edge contributes twice to the sum of degrees, once for each of the two
vertices on which it is incident. [

The following two results are immediate consequences:

Corollary 1.9. In an undirected graph there must be an even number of vertices
that have odd degree.

Corollary 1.10. The cube graph I has |E| = d 2471

The first is fairly obvious: the right hand side of () is clearly an even number, so
the sum of degrees appearing on the left must be even as well. To get the formula
for the number of edges in I, note that it has 2¢ vertices, each of degree d, so the
Handshaking Lemma tells us that

2E| = ) deg(v) = 2*xd

veV

and thus |E| = (d x 29)/2 = d2¢71.
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