
Lecture 3

Graph Colouring

The material from the first two lectures provides enough background that we can
begin to discuss a problem—graph colouring—that is both mathematically rich and
practically applicable.
Reading:
The material for this lecture appears, in very condensed form, in Chapter 9 of

Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition
(Available from SpringerLink)

A somewhat longer discussion, with many interesting exercises, appears in

John M. Harris, Jeffry L. Hirst and Michael J. Mossinghoff (2008), Com-
binatorics and Graph Theory, 2nd edition. (Available from SpringerLink)

3.1 Notions and notation
Definition 3.1. A k-colouring of an undirected graph G(V,E) is a function

ϕ : V → {1, . . . , k}

that assigns distinct values to adjacent vertices: that is, (u, v) ∈ E ⇒ ϕ(u) ̸= ϕ(v).
If G has a k-colouring then it is said to be k-colourable.

I’ll refer to the values assigned by ϕ(v) as “colours” and say that a graph is k-
colourable if one can draw it in such a way that no two adjacent vertices have the
same colour. Examples of graphs and colourings include

• Kn, the complete graph on n vertices is clearly n-colourable, but not (n− 1)
colourable;

• Km,n, the complete bipartite graph on groups of m and n vertices, is 2-
colourable.

Both classes of example are illustrated in Figure 3.1.

3.1

http://bit.ly/Jungnickel4
http://link.springer.com/book/10.1007/978-0-387-79711-3


1 1

1 1 1

1

2

2 2 2 2

2

5

1

24

3

2

34

Figure 3.1: The complete graphs K4 and K5 as well as the complete bipartite
graphs K2,2 and K3,4, each coloured using the smallest possible number of colours.
Here the colouring is represented in two ways: as numbers giving ϕ(v) for each vertex
v and with, well, colours (see the electronic version).

Definition 3.2. The chromatic number χ(G) is the smallest number k such that
G is k-colourable.

Thus, as the examples above suggest, χ(Kn) = n and χ(Km,n) = 2. The latter is a
special case of the following easy lemma, whose proof is left as an exercise.

Lemma 3.3. A graph G has chromatic number χ(G) = 2 if and only if it is bipartite.

Another useful result is

Lemma 3.4. If H is a subgraph of G and G is k-colourable, then so is H.

and an immediate corollary is

Lemma 3.5. If H is a subgraph of G then χ(H) ≤ χ(G).

which comes in handy when trying to prove that a graph has a certain chromatic
number.

The proof of Lemma 3.4 is straightforward: the idea is that constraints on the
colours of vertices arise from edges and so, as every edge in H is also present in
G, it can’t be any harder to colour H than it is to colour G. Equivalently: if we
have a colouring of G and want a colouring of H we can simply use the same colour
assignments. To be more formal, say that the vertex and edge sets of G are V and E,
respectively, while those of H are V ′ ⊆ V and E ′ ⊆ E. If a map ϕG : V → {1, . . . , k}
is a k-colouring of G, then ϕH : V ′ → {1, . . . , k} defined as the restriction of ϕG to
V ′ produces a k-colouring of H.

Lemma 3.5 then follows from the observation that, although Lemma 3.4 assures
us that H has a colouring that uses χ(G) colours, it may also be possible to find
some other colouring that uses fewer.



3.2 An algorithm to do colouring
The chromatic number χ(G) is defined as a kind of ideal: it’s the minimal k for
which we can find a k-colouring. This might make you suspect that it’s hard to find
χ(G) for an arbitrary graph—how could you ever know that you’d used the smallest
possible number of colours? And, aside from a few exceptions such as those in the
previous section, you’d be right to think this: there is no known fast (we’ll make
the notion of “fast” more precise soon) algorithm to find an optimal (in the sense of
using the smallest number of colours) colouring.

3.2.1 The greedy colouring algorithm
There is, however, a fairly easy way to to compute a (possibly non-optimal) colouring
c : V → N. The idea is to number the vertices and then, starting with c(v1) = 1,
visit the remaining vertices in order, assigning them the lowest-numbered colour not
yet used for a neighbour. The algorithm is called greedy because it has no sense of
long-range strategy: it just proceeds through the list of vertices, blindly choosing
the colour that seems best at the moment.

Algorithm 3.6 (Greedy colouring).
Given a graph G with edge set E, vertex set V = {v1, . . . , vn} and adjacency lists
Av, construct a function c : V → N such that if the edge e = (vi, vj) ∈ E, then
c(vi) ̸= c(vj).

(1) Initialize
Set c(vj)← 0 for all 1 ≤ j ≤ n
c(v1)← 1
j ← 2

(2) c(vj)← min
(
k ∈ N | k > 0 and c(u) ̸= k ∀u ∈ Avj

)
(3) Are we finished? Is j = n?

• If so, stop: we’ve constructed a function c with the desired properties.
• If not, set j ← (j + 1) and go to step (2).

Remarks

• The algorithm above is meant to be explicit enough that one could implement
it in R or MATLAB. It thus includes expressions such as j ← 2 which means
“set j to 2” or “j gets the (new) value 2”. The operator← is sometimes called
the assignment operator and it appears in some form in all the programming
languages I know. Sometimes it’s expressed with notation like j = j + 1,
but this is a jarring, nonsensical-looking thing for a mathematician and so I’ll
avoid it.



• We will discuss several more algorithms in this course, but will not be much
more formal about how they are specified. This is mainly because a truly rig-
orous account of computation would take us into the realms of computability
theory, a part of mathematical logic, and would require much of the rest of
the term, leaving little time for our main subjects.

Finally, to emphasize further the mechanical nature of greedy colouring, we could
rewrite it in a style that looks even closer to MATLAB code:
Algorithm 3.7 (Greedy colouring: as pseudo-code).
Given a graph G with edge set E, vertex set V = {v1, . . . , vn} and adjacency lists
Av, construct a function c : V → N such that if the edge e = (vi, vj) ∈ E, then
c(vi) ̸= c(vj).

(1) Set c(vj)← 0 for 1 ≤ j ≤ n.

(2) c(v1)← 1.

(3) for 2 ≤ j ≤ n {

(4) Choose a colour k > 0 for vertex vj that differs from those of its neighbours
c(vj)← min

(
k ∈ N | k > 0 and c(u) ̸= k ∀u ∈ Avj

)
(5) } End of loop over vertices vj.

Both versions of the algorithm perform exactly the same steps, in the same
order, so comparison of these two examples may clarify the different approaches to
presenting algorithms.

3.2.2 Greedy colouring may use too many colours
If we use Algorithm 3.7 to construct a function c : V → N, then we can regard it as
a k-colouring by setting ϕ(vj) = c(vj), where k is given by

k = max
vj∈V

c(vj). (3.1)

For the reasons discussed above, this k provides only an upper bound on the chro-
matic number of G. To drive this point home, consider Figure 3.2, which illustrates
the process of applying the greedy colouring algorithm to two graphs, one in each
column.

For the graph in the left column—call it G1—the algorithm produces a 3-
colouring, which is actually optimal. To see why, notice that the subgraph consisting
of vertices v1, v2 and v3 (along with the associated edges) is isomorphic to K3. Thus
we need at least 3 colours for these three vertices and so, using Lemma 3.5, we can
conclude that χ(G1) ≥ 3. On the other hand, the greedy algorithm provides an
explicit example of a 3-colouring, which implies that χ(G1) ≤ 3, so we have proven
that χ(G1) = 3.

The graph in the right column–call it G2—is isomorphic to G1 (a very keen
reader could write out the isomorphism explicitly), but its vertices are numbered
differently and this means that Algorithm 3.7 colours them in a different order and
arrives at a sub-optimal k-colouring with k = 4.



v
1

v
3

v
4

v
2

v
5

1

v
1

v
3

v
4

v
2

v
5

1

2

v
1

v
3

v
4

v
2

v
5

1

2

3

v
1

v
3

v
4

v
2

v
5

1 1

2

3

v
1

v
3

v
4

v
2

v
5

1 1 2

2

3

v
1

v
3

v
2

v
5

1

v
1

v
3

v
2

v
5

1

2

v
1

v
3

v
2

v
5

1

2

3

v
1

v
3

v
2

v
5

1 1

2

3

v
1

v
3

v
4

v
4

v
4

v
4

v
4

v
2

v
5

1 4 1

2

3

Figure 3.2: Two examples of applying Algorithm 3.7: the colouring process runs
from the top of a column to the bottom. The graphs in the right column are the same
as those in the left, save that the labels on vertices 4 and 5 have been switched. As
in Figure 3.1, the colourings are represented both numerically and graphically.



3.3 An application: avoiding clashes
I’d like to conclude by introducing a family of applications that involve avoiding
some sort of clash—where some things shouldn’t be allowed to happen at the same
time or in the same place. A prototypical example is:

Example 3.8. Suppose that a group of ministers serve on committees as described
below:

Committee Members
Culture, Media & Sport Alexander, Burt, Clegg
Defence Clegg, Djanogly, Evers
Education Alexander, Gove
Food & Rural Affairs Djanogly, Featherstone
Foreign Affairs Evers, Hague
Justice Burt, Evers, Gove
Technology Clegg, Featherstone, Hague

What is the minimum number of time slots needed so that one can schedule meetings
of these committees in such a way that the ministers involved have no clashes?

One can turn this into a graph-colouring problem by constructing a graph whose
vertices are committees and whose edges connect those that have members in com-
mon: such committees can’t meet simultaneously, or their shared members will
have clashes. A suitable graph appears at left in Figure 3.3, where, for example,
the vertex for the Justice committee (labelled Just) is connected to the one for the
Education committee (Ed) because Gove serves on both.

The version of the graph at right in Figure 3.3 shows a three-colouring and,
as the vertices CMS, Ed and Just form a subgraph isomorphic to K3, this is the
smallest number of colours one can possibly use and so the chromatic number of the
committee-and-clash graph is 3. This means that we need at least three time slots to
schedule the meetings. To see why, think of a vertex’s colour as a time slot: none of
the vertices that receive the same colour are adjacent, so none of the corresponding
committees share any members and thus that whole group of committees can be
scheduled to meet at the same time. There are variants of this problem that involve,
for example, scheduling exams so that no student will be obliged to be in two places
at the same time or constructing sufficiently many storage cabinets in a lab so that
chemicals that would react explosively if stored together can be housed separately:
see this week’s Problem Set for another example.



CMS

Def

Ed

FRA

FAJust

Tech

CMS

DefEd FRA

FAJust

Tech

Figure 3.3: The graph at left has vertices labelled with abbreviated committee names
and edges given by shared members. The graph at right is isomorphic, but has been
redrawn for clarity and given a three-colouring, which turns out to be optimal.


	I  Notions and Notation
	First Steps in Graph Theory
	The Königsberg Bridge Problem
	Definitions: graphs, vertices and edges
	Standard examples
	A first theorem about graphs

	Representation, Sameness and Parts
	Ways to represent a graph
	Edge lists
	Adjacency matrices
	Adjacency lists

	When are two graphs the same?
	Terms for parts of graphs

	Graph Colouring
	Notions and notation
	An algorithm to do colouring
	The greedy colouring algorithm
	Greedy colouring may use too many colours

	An application: avoiding clashes

	Efficiency of algorithms
	Introduction
	Examples and issues
	Greedy colouring
	Matrix multiplication
	Primality testing and worst-case estimates

	Bounds on asymptotic growth
	Analysing the examples
	Greedy colouring
	Matrix multiplication
	Primality testing via trial division

	Afterword

	Walks, Trails, Paths and Connectedness
	Walks, trails and paths
	Connectedness
	Connectedness in undirected graphs
	Connectedness in directed graphs

	Afterword: a useful proposition


	II  Trees and the Matrix-Tree Theorem
	Trees and forests
	Basic definitions
	Leaves and internal nodes
	Kinds of trees

	Three useful lemmas and a proposition
	A festival of proofs by induction
	Graph surgery

	A theorem about trees
	Proof of the theorem


	The Matrix-Tree Theorems
	Kirchoff's Matrix-Tree Theorem
	Tutte's Matrix-Tree Theorem
	Arborescences: directed trees
	Tutte's theorem

	From Tutte to Kirchoff

	Matrix-Tree Ingredients
	Lightning review of permutations
	The Symmetric Group Sn
	Cycles and sign

	Using graphs to find the cycle decomposition
	The determinant is a sum over permutations
	The Principle of Inclusion/Exclusion
	A familiar example
	Three subsets
	The general case
	An example

	Appendix: Proofs for Inclusion/Exclusion
	Proof of Lemma 8.12, the case of two sets
	Proof of Theorem 8.13
	Alternative proof


	Proof of Tutte's Matrix-Tree Theorem
	Single predecessor graphs
	Counting spregs with determinants
	Counting spregs
	An example
	Counting spregs in general

	Proof of Tutte's theorem


	III  Eulerian and Hamiltonian Graphs
	Eulerian Multigraphs
	Hamiltonian graphs and the Bondy-Chvátal Theorem
	Hamiltonian graphs
	The closure a graph
	An algorithm to construct [G]
	An example

	The Bondy-Chvátal Theorem
	Afterword


	IV  Distance in Graphs and Scheduling
	Distance in Graphs
	Adding weights to edges
	A notion of distance
	Shortest path problems
	Uniform weights & Breadth First Search
	Bellman's equations

	Appendix: BFS revisited

	Tropical Arithmetic and Shortest Paths
	All pairs shortest paths
	Counting walks using linear algebra
	Tropical arithmetic
	Tropical matrix operations
	A tropical version of Bellman's equations

	Minimal-weight paths in a tropical style

	Critical Path Analysis
	Scheduling problems
	From tasks to weighted digraphs
	From weighted digraphs to schedules

	Graph-theoretic details
	Shortest times and maximal-weight paths
	Topological ordering

	Critical paths
	Earliest starts
	Latest starts
	Critical paths



	V  Planar Graphs
	Planar Graphs
	Drawing graphs in the plane
	The topology of curves in the plane
	Faces of a planar graph

	Euler's formula for planar graphs
	Planar graphs can't have many edges
	Preliminaries: bridges and girth
	Main result: an inequality relating n and m
	Gritty details of the proof of Theorem 15.12
	The maximal number of edges in a planar graph 

	Two non-planar graphs
	Kuratowski's Theorem
	Afterword



