Lecture 10

Eulerian Multigraphs

This section of the notes revisits the Konigsberg Bridge Problem and generalises
it to explore Eulerian multigraphs: those that contain a closed walk that traverses
every edge exactly once.

Reading:
The material in today’s lecture comes from Section 1.3 of

Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition,
(available online via SpringerLink),

though his proof is somewhat more terse.

In Lecture m we used a proof by contradiction to demonstrate that there is no
solution to the Konigsberg Bridge Problem, which is illustrated in Figure . That
is, it’s not possible to find a walk that (a) crosses each of the city’s seven bridges
exactly once and (b) starts and finishes in the same place. Today we’ll generalise
the problem, then find a number of equivalent conditions that tell us when the
corresponding closed walk exists.

First, recall that a multigraph G(V, E') has the same definition as a graph, except
that we allow parallel edges. That is, we allow pairs of vertices (u,v) to appear
more than once in F. Because of this, people sometimes speak of the edge list of a
multigraph, as opposed to the edge set.

North Bank

South Bank

Figure 10.1:  We proved in the first lecture of the term that it is impossible to find
a closed walk that traverses every edge in the graph above exactly once.

10.1


http://bit.ly/Jungnickel4

Figure 10.2:  The panel at left shows a graph produced by adding two edges (shown
in blue) to the graph from the Konigsberg Bridge Problem. These extra edges make
the graph Fulerian and the panel at right illustrated the associated partition of the
edge set into cycles

The main theorem we’ll prove today relies on the following definitions:

Definition 10.1. An Eulerian trail in a multigraph G(V, E) is a trail that includes
each of the graph’s edges exactly once.

Definition 10.2. An Eulerian tour in a multigraph G(V, E) is an Eulerian trail
that starts and finishes at the same vertex. FEquivalently, it is a closed trail that
traverses each of the graph’s edges exactly once.

Definition 10.3. A multigraph that contains an FEulerian tour is said to be an
FEulerian multigraph.

Armed with these, it’s then easy to formulate the following characterisation of Eu-
lerian multigraphs:

Theorem 10.4 (Jungnickel’s Theorem 1.3.1). Let G be a connected multigraph.
Then the following statements are equivalent:

(1) G is Eulerian.
(2) Each vertex of G has even degree.
(8) The edge set of G can be partitioned into cycles.

The last of these characterisations may be new to you: it means that it is possible
to arrange the edges of G into a collection of disjoint cycles. Figure [10.2 shows
an example of such a partition for a graph derived from the Konigsberg Bridge
multigraph by adding two extra edges, shown in blue at left. Adding these edges
makes the graph Eulerian, and a decomposition of the edge set into cycles appears
at right. Note that undirected multigraphs can contain cycles of length two that
consist of a pair of parallel edges.

The proof of the theorem is simpler if one has the following lemma, whose proof
I’ll defer until after that of the main result. Note that the lemma, unlike the theorem,
does not require the multigraph to be connected.




Lemma 10.5 (Vertices of even degree and cycles). If G(V, E) is a multigraph with
a nonempty edge set E # 0 and the property that deg(v) is an even number for all
v €V, then G contains a cycle.

Proof of Theorem . The theorem says these statements are all “equivalent”,
which encompasses a total of six implications® but we don’t need to prove all of
them: it’s sufficient to prove, say, that (1) = (2), (2) = (3) and (3) = (1).
That is, it’s sufficient to make a directed graph whose vertices are the statements
and whose edges indicate implications. If this graph is strongly connected, so that
one can get from any statement to any other by following a chain of implications,
then the result is proven.

(1) = (2)

Proof. We know G is Eulerian, so it has a closed trail that includes each edge exactly
once. Imagine that this trail is specified by the following sequence of vertices

Vo, + s Uy = Vg (10.1)

where |E| = m and the v; are the vertices encountered along the trail, so that
some of them may appear more than once. In particular, vy = v,, because the trail
starts and finishes at the same vertex. As G is a connected multigraph, every vertex
appears somewhere in the sequence (if not, the absent vertices would have degree
zero and not be connected to any of the others).

Consider first some vertex u # vy. It must appear one or more times in the
sequence above and, each time, it appears in a pair of successive edges: if u = v,
with 0 < j < m, then these edges are (v;_1,v;) and (vj,v;41). This means that
deg(u) is a sum of 2’s, with one term in the sum for each appearance of u in the
sequence ([10.1)). A similar argument applies to vy, save that the edge that forms a
pair with (vo, v1) iS (Vm—1, Um = vp). O

(2) = (3): The theorem requires this implication to hold for connected multi-
graphs, but this particular result is more general and applies to any multigraph in
which all vertices have even degree. We’ll prove this stronger version by induction
on the number of edges. That is, we’ll prove:

Proposition. If G(V, E) is a multigraph (whether connected or not) in which deg(v)
is an even number for all vertices v € V', then the edge set E can be partitioned into
cycles.

Proof. The base case is a multigraph with |E| = 0. Such a graph consists of one or
more isolated vertices and, as the graph has no edges, deg(v) = 0 (an even number)
for all v € V and the (empty) edge set can clearly be partitioned into a union of
zero cycles.

Now suppose the result is true for every multigraph G(V, E) with |E| < mq edges
whose vertices all have even degree. Consider such a multigraph with |E| = mg + 1:
we need to demonstrate that the edge set of such a graph can be partitioned into

)= 2,2 = 0,01 = @...



cycles. We can use Lemma m to establish that we can find at least one cycle C
contained in G. And then we can form a new graph G'(V', E') = G\C formed by
removing C' from G. This bit of graph surgery either leaves the degree of a vertex
unchanged (if the vertex isn’t part of C') or decreases it by two, but either way, all
vertices in G’ have even degree because the corresponding vertices in G do.

The cycle C' will contain at least one edge (and, unless we permit self-loops, two
or more) and so G’ will have at most mg edges and so the inductive hypothesis will
apply to it. This means that we can partition £’ = E\C' into cycles. But then we
can add C to the partition of £ and so get a partition into cycles for E, completing
the inductive step and so proving our result. 0

(3) = (1): Here we need to establish that if the edge set of a connected multigraph
G(V, E) consists of a union of cycles, then G contains an Eulerian tour. This result is
trivial unless the partition of F involves at least two cycles, so we’ll restrict attention
to that case from now on.

The key observation is that we can always find two cycles that we can merge to
produce a single, longer closed trail that includes all the edges from the two cycles.
To see why, note that there must be a pair of cycles that share a vertex (if there
weren’t, all the cycles would all lie in distinct connected components, contradicting
the connectedness of GG). Suppose that the shared vertex is v, and that the cycles
are (7 and Cs given by the vertex sequences

C1 = {v, = vg,01,...,00 =V} and Cy = {v, = ug, Uy, ..., up, = v }.

We can combine them, as illustrated in Figure to make a closed trail given by
the vertex sequence

{Vs = V0, V1, .., Uy, = Vs = Ug, Uty ..., Ugy = Uy} .

Scrupulous readers may wish to use this observation as the basis of a proof by
induction (on the number of elements in the partition of E) of the somewhat stronger
result:

Proposition 10.6. If G(V, E) is a strongly-connected graph whose edge set can be
partitioned as a union of disjoint, closed trails, then G is Fulerian.

Then, as a cycle is a special case of a closed trail, we get the desired implication
as an immediate corollary. ]

I'd like to conclude by giving an algorithmic proof of Lemma . The idea is
to choose some initial vertex uy and then construct a trail in the graph by following
one of ug’s edges, then one of the edges of uy’s successor in the trail ... and so on
until we revisit some vertex and thus discover a cycle. Provided that we can do
as I say—always move on through the graph without ever tracing over some edge
twice—this approach is bound to work because there are only finitely many vertices.
The proof that follows formalises this approach by spelling out an explicit algortihm.

Proof of Lemma . Consider the following algorithmic process, which finds a cy-
cle in a multigraph G(V, E) for which E # () and deg(v) is even for all v € V.



Figure 10.3: The key step in the proof of the implication (3) —
(1) in the proof of Theorem @ The cycles C; = (vx = vy, v1,V2,03,),
whose wvertices are shown in red, and Cy = (vi = ug, U1, Uz, Us, Uy, Us, Ug, Uz, Ug),
whose wvertices are shown in yellow, may be merged to create the closed trail
(Ve = Vg, V1, Vo, U3, Vg = Uy = Ug, U7, Us, U3, Uy, Us, Ug, UT, Ug) indicated by the dotted
line.

Algorithm 10.7 (Finding a cycle).
Given a multigraph G(V, E) in which |E| > 0 and all vertices have even degree,
construct a trail T' given by a sequence of edges

T = {(ug,u1), (ur,ua), ..., (ue_1,up)}

that includes a cycle.

(1) Number the vertices, so that V- = {vy, ..., v,}. This is for the sake of con-
creteness: later in the algorithm, when we need to choose one of a set of
vertices that have a particular property, we can choose the lowest-numbered
one.

(2) Initialize some things

e Set a counter j < 0.

e Choose the first vertex in the trail, ugy, to be the lowest-numbered vertex
that has deg(vg) > 0. Such vertices exist, as we know |E| > 0.

e Initialise a list A (for “available”) of edges that we have not yet included
in T. At the outset we set A < FE as we haven’t used any edges yet.

(3) Find the edge (u;,w) € A where w is the lowest-numbered neighbour of w,;
whose edge we haven't yet used. The key to the algorithm’s success is that this
step is always possible. We chose uy with deg(ug) > 0, so this step is possible
when j = 0. And when j > 0, the evenness of deg(u;) means that if the trail
we are constructing can arrive at u;, then it must also be able to depart. The
growing trail T either comes to a stop at u; (see below) or uses a pair of the



vertex’s edges—omne to arrive and another to depart—and so leaves an even
number of unused edges behind.

We can thus always extend the trail T by one edge, modifying the list of unused
edges A accordingly.
e T+ TU{(uj,w)}
o A<+ A\{(u;,w)} (We've used (one copy of) the edge (u;, w)).
(4) Are we finished? Does w already appear in the trail?
e If yes, stop. The trail includes a cycle that starts and finishes at w.

e If no, set uj1y < w, then set j < j+ 1 and go to Step B

The only way this process can stop is by revisiting a vertex and it must do this
within |V| = n steps. And once we've revisited a vertex, we've found a cycle and so
are finished. ]



	I  Notions and Notation
	First Steps in Graph Theory
	The Königsberg Bridge Problem
	Definitions: graphs, vertices and edges
	Standard examples
	A first theorem about graphs

	Representation, Sameness and Parts
	Ways to represent a graph
	Edge lists
	Adjacency matrices
	Adjacency lists

	When are two graphs the same?
	Terms for parts of graphs

	Graph Colouring
	Notions and notation
	An algorithm to do colouring
	The greedy colouring algorithm
	Greedy colouring may use too many colours

	An application: avoiding clashes

	Efficiency of algorithms
	Introduction
	Examples and issues
	Greedy colouring
	Matrix multiplication
	Primality testing and worst-case estimates

	Bounds on asymptotic growth
	Analysing the examples
	Greedy colouring
	Matrix multiplication
	Primality testing via trial division

	Afterword

	Walks, Trails, Paths and Connectedness
	Walks, trails and paths
	Connectedness
	Connectedness in undirected graphs
	Connectedness in directed graphs

	Afterword: a useful proposition


	II  Trees and the Matrix-Tree Theorem
	Trees and forests
	Basic definitions
	Leaves and internal nodes
	Kinds of trees

	Three useful lemmas and a proposition
	A festival of proofs by induction
	Graph surgery

	A theorem about trees
	Proof of the theorem


	The Matrix-Tree Theorems
	Kirchoff's Matrix-Tree Theorem
	Tutte's Matrix-Tree Theorem
	Arborescences: directed trees
	Tutte's theorem

	From Tutte to Kirchoff

	Matrix-Tree Ingredients
	Lightning review of permutations
	The Symmetric Group Sn
	Cycles and sign

	Using graphs to find the cycle decomposition
	The determinant is a sum over permutations
	The Principle of Inclusion/Exclusion
	A familiar example
	Three subsets
	The general case
	An example

	Appendix: Proofs for Inclusion/Exclusion
	Proof of Lemma 8.12, the case of two sets
	Proof of Theorem 8.13
	Alternative proof


	Proof of Tutte's Matrix-Tree Theorem
	Single predecessor graphs
	Counting spregs with determinants
	Counting spregs
	An example
	Counting spregs in general

	Proof of Tutte's theorem


	III  Eulerian and Hamiltonian Graphs
	Eulerian Multigraphs
	Hamiltonian graphs and the Bondy-Chvátal Theorem
	Hamiltonian graphs
	The closure a graph
	An algorithm to construct [G]
	An example

	The Bondy-Chvátal Theorem
	Afterword


	IV  Distance in Graphs and Scheduling
	Distance in Graphs
	Adding weights to edges
	A notion of distance
	Shortest path problems
	Uniform weights & Breadth First Search
	Bellman's equations

	Appendix: BFS revisited

	Tropical Arithmetic and Shortest Paths
	All pairs shortest paths
	Counting walks using linear algebra
	Tropical arithmetic
	Tropical matrix operations
	A tropical version of Bellman's equations

	Minimal-weight paths in a tropical style

	Critical Path Analysis
	Scheduling problems
	From tasks to weighted digraphs
	From weighted digraphs to schedules

	Graph-theoretic details
	Shortest times and maximal-weight paths
	Topological ordering

	Critical paths
	Earliest starts
	Latest starts
	Critical paths



	V  Planar Graphs
	Planar Graphs
	Drawing graphs in the plane
	The topology of curves in the plane
	Faces of a planar graph

	Euler's formula for planar graphs
	Planar graphs can't have many edges
	Preliminaries: bridges and girth
	Main result: an inequality relating n and m
	Gritty details of the proof of Theorem 15.12
	The maximal number of edges in a planar graph 

	Two non-planar graphs
	Kuratowski's Theorem
	Afterword



