
Lecture 14

Critical Path Analysis

This lecture applies ideas about distance in weighted graphs to solve problems in
the scheduling of large, complex projects.
Reading:
The topic is discussed in Section 3.5 of

Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition,
which is available online via SpringerLink,

but it is such an important application that it is also treated in many other places.

14.1 Scheduling problems
Suppose you are planning a dinner that involves a number of dishes, some of which
have multiple components or stages of preparation, say, a roast with sauces or a pie
with pastry and filling that have to be prepared separately. Especially for a novice
cook, it can be difficult to arrange the cooking so that all the food is ready at the
same moment. Somewhat surprisingly, graph theory can help in this, as well as in
many more complex scheduling problems.

The key abstraction is a certain kind of directed graph constructed from a list
of tasks such as the one in Table 14.1, which breaks a large project down into a
list of smaller tasks and, for each one, notes (a) how long it takes to complete and
(b) which other tasks are its immediate prerequisites. Here, for example, task A
might be “wash and peel all the vegetables” while D and E—which have A as a
prerequisite—might be “assemble the salad” and “fry the garlic briefly over very
high heat.”

14.1.1 From tasks to weighted digraphs
Figure 14.1 shows a directed graph associated with the project summarised in Ta-
ble 14.1. It has:

• a vertex for each task;

14.1

http://bit.ly/Jungnickel4

Time to
Task Complete Prerequisites

A 10 None
B 12 None
C 15 None
D 6 A & C
E 3 A & B
F 5 B & C
G 7 D & F
H 6 D & E
I 9 E & F

Table 14.1: Summary of a modestly-sized project. The first column lists various
tasks required for the completion of the project, while the second column gives the
time (in minutes) needed to complete each task and the third column gives each task’s
immediate prerequisites.

• edges that run from prerequisites to the tasks that depend on them. Thus for
example, there is a directed edge (A,D), as task D has task A as a prerequisite.

• There are also two extra vertices, one called S (for “start”) that is a predecessor
for all the tasks that have no prerequisites and another, Z, that corresponds
to finishing the project and is a successor of all tasks that are not prerequisites
for any other task.

• There are edge weights that correspond to the time it takes to complete the
task at the tail vertex. Thus—as task A takes 10 minutes to complete—all
the edges coming out of the vertex A have weight 10.

A

BS

C

D

E

F

G

H Z

I

0

10

10

12

12

15
15

6

6

3

3

5
5

7

6

9

0

0

Figure 14.1: The digraph associated with the scheduling problem from Table 14.1.

14.2

Task Prereq’s
P: get a pink from G
B: get a blue form P
G: get a green form B

P B G

Figure 14.2: An example showing why the digraph associated with a scheduling
problem shouldn’t contain cycles. It represents a bureaucratic nightmare in which
one needs a pink form P in order to get a blue form B in order to get the green
form G that one needs to get a pink form P .

14.1.2 From weighted digraphs to schedules
Once we have a graph such as the one in Figure 14.1 we can answer a number of
important questions about the project including:

(1) What is the shortest time in which we can complete the work?

(2) What is the earliest time (measured from the start of the project) at which
we can start a given task?

(3) Are there any tasks whose late start would delay the whole project?

(4) For any tasks that don’t need to be started as early as possible, how long can
we delay their starts?

In the discussion that follows, we’ll imagine that we have as many resources as we
need (as many hands to help in the kitchen, as many employees and as much equip-
ment as needed to pursue multiple tasks in parallel · · ·). In this setting, Lemma 14.1,
proved below, provides a tool to answer all of these questions.

14.2 Graph-theoretic details
A directed graph representing a project that can actually be completed cannot
contain any cycles. To see why, consider the graph in Figure 14.2. It tells us that
we cannot start task G until we have completed its prerequisite, task B, which we
cannot start before we complete its prerequisite, P · · · which we cannot start until
we’ve completed G. This means we can never even start the project, much less finish
it.

Thus any graph that describes a feasible project should be a directed, acyclic
graph (often abbreviated DAG) with non-negative edge weights. From now on
we’ll restrict attention to such graphs and call them task-dependency graphs. We’ll
imagine that they are constructed from a project described by a list of tasks such
as the one in Table 14.1 and that they look like the example in Figure 14.1. In
particular, we’ll require our graphs to have a starting vertex S which is the only
vertex with degin(v) = 0 and a terminal vertex Z, which is the only vertex with
degout(v) = 0.

14.3

Task Time Needed Prereq’s
A 10 hours None
B 6 hours None

S

A

B Z

0

0

10

6

Figure 14.3: An example showing why the shortest time in which one can complete
a project corresponds to a maximal-weight walk from the start vertex S to the
terminal vertex Z.

14.2.1 Shortest times and maximal-weight paths
Now consider the very simple project illustrated in Figure 14.3. It involves just two
tasks: A, which takes 10 hours to complete and B which takes 6 hours. Even if—as
our assumptions allow—we start both tasks at the same time and work on them in
parallel, the soonest we can possibly finish the project is 10 hours after we start.
This is a special case of the following result, whose proof I’ll only sketch briefly.

Lemma 14.1 (Shortest times and maximal weights). If G(V,E,w) is a task-dependency
graph that describes a scheduling problem, and if we start the work at t = 0, then
the earliest time, tv, at which we can start the task corresponding to vertex v is the
weight of a maximal-weight walk from S to v.

The proof of Lemma 14.1 turns on the observation that the times tv satisfy
equations that look similar to Bellman’s Equations, except that they have a max()
where Bellman’s Equations have a min():

tS = 0 and tv = max
u∈Pv

(tu + w(u, v)) ∀ v ̸= S. (14.1)

In the equation at right, Pv is v’s predecessor list and w(u, v) is the weight of the edge
from u to v or, equivalently, the time it takes to complete the task corresponding to
u.

Although the Bellman-like equations above provide an elegant characterisation
of the tv, they aren’t necessarily all that practical as a way to calculate the tv.
The issue is that in order to use Eqn. (14.1) to compute tv, we need tu for all v’s
predecessors u ∈ Pv. And for each of them, we need tw for w ∈ Pu · · · , and so on.
Fortunately this problem has a simple resolution in DAGs, as we’ll see below. The
idea is to find a clever way to organise the computations so that the results we need
when computing tv are certain to be available.

14.4

1 2

3

4

2 3

1

4

Figure 14.4: A digraph with two distinct topological orderings.

14.2.2 Topological ordering
Definition 14.2. If G(V,E) is a directed, acyclic graph with |V | = n, then a
topological ordering (sometimes also called a topological sorting) of G is a
map Φ : V → {1, 2, . . . , n} with the properties that

• Φ(v) = Φ(u) ⇒ u = v;

• (u, v) ∈ E ⇒ Φ(u) < Φ(v).

In other words, a topological ordering is a way of numbering the vertices so that the
graph’s directed edges always point from a vertex with a smaller index to a vertex
with a bigger one.

Topological orderings are not, in general, unique, as is illustrated in Figure 14.4,
but as the following results show, a DAG always has at least one.

Lemma 14.3 (DAGs contain sink vertices). If G(V,E) is a directed, acyclic graph
then it contains at least one vertex v with degout(v) = 0. Such a vertex is sometimes
called a sink vertex.

Proof of Lemma 14.3. Construct a walk through G(V,E) as follows. First choose
an arbitrary vertex v0 ∈ V . If degout(v0) = 0 we are finished, but if not choose an
arbitrary successor of v0, v1 ∈ Sv0 . If degout(v1) = 0 we are finished, but if not,
choose an arbitrary successor of v1, v2 ∈ Sv1 · · · and so on. This construction can
never revisit a vertex as G is acyclic. Further, as G has only finitely many vertices,
the construction must come to a stop after at most |V | − 1 steps. But the only way
for it to stop is to reach a vertex vj such that degout(vj) = 0, which proves that such
a vertex must exist.

Theorem 14.4 (DAGs have topological orderings). A directed, acyclic graph G(V,E)
always has a topological ordering.

Proof of Theorem 14.4. One can prove this by induction on the number of vertices.
The base case is |V | = 1 and clearly, assigning the number 1 to the sole vertex gives
a topological ordering.

Now suppose the result is true for all DAGs with |V | ≤ n0 and consider a
DAG with |V | = n0 + 1. Lemma 14.3 tells us that G contains a vertex w with
degout(w) = 0. Construct G′(V ′, E ′) = G\w. It is a DAG (because G was one), but

14.5

2

31

4

5

6

7

8

9 11

10

0

10

10

12

12

15
15

6

6

3

3

5
5

7

6

9

0

0

Figure 14.5: A topological ordering for the digraph associated with the scheduling
problem from Table 14.1 in which the vertex label v has been replaced by the value
Φ(v) assigned by the ordering that’s listed in Table 14.2.

v S A B C D E F G H I Z
Φ(v) 1 2 3 4 5 6 7 8 9 10 11

Table 14.2: The topological ordering illustrated in Figure 14.5.

has only |V ′| = n0 vertices and so, by the inductive hypothesis, G′ has a topolog-
ical ordering Φ′ : V ′ → {1, 2, . . . , n0}. We can extend this to a obtain a function
Φ : V → {1, 2, . . . , n0 + 1} by choosing

Φ(v) =

{
Φ′(v) if v ̸= w
n0 + 1 if v = w

Further, this Φ is clearly a topological ordering because all predecessors u ∈ Pw of
w have

Φ(u) = Φ′(u) ≤ n0 < n0 + 1 = Φ(w)

and, by construction, w has no successors. This concludes the inductive step and
establishes that all DAGs have at least one topological ordering.

14.3 Critical paths
Figure 14.5 shows a topological ordering for the graph from Figure 14.1. The reason
we’re interested in such orderings is that they provide a way to solve Eqns (14.1) in a
task-dependency graph. By construction, the starting vertex S is the only one that
has no predecessors and so any topological ordering must have Φ(S) = 1. Similarly,
the terminal vertex Z is the only one that has no successors, so for a project with n
tasks, Φ(Z) = n+ 2.

By convention, we start the project at tS = 0. If we then use Eqns (14.1) to
compute the rest of the tv, working through the vertex list in the order assigned by
the topological ordering, it will always then be true that when we want to compute

tv = max
u∈Pv

(tu + w(u, v)) ,

we will have all the tu for u ∈ Pv available.

14.6

0

00

0

15

0

10

10

12

12

15
15

6

6

3

3

5
5

7

6

9

0

0

0

00

0

15

12

15

21

21 29

20

0

10

10

12

12

15
15

6

6

3

3

5
5

7

6

9

0

0

Figure 14.6: In the graphs above the vertex labels have been replaced with values of
tj, the earliest times at which the corresponding task can start. The graph at left
shows the edges that enter into Eqn. (14.1) for the computation of t4 while the graph
at right shows all the tj.

14.3.1 Earliest starts
For the digraph in Figure 14.5, we get

tS = t1 = 0

tA = t2 = t1 + w(1, 2) = 0 + 0

...
tD = t5 = max(t2 + w(2, 5), t4 + w(4, 5)) = max(0 + 10, 0 + 15) = 15 (14.2)

...

Figure 14.6 illustrates both the computation of t4 and the complete set of tj. As
tZ = t11 = 29, we can conclude that it takes a minimum of 29 minutes to complete
the project.

14.3.2 Latest starts
The tv that we computed in the previous section is the earliest time at which the
task for vertx v could start, but it may be possible to delay the task without delaying
the whole project. Consider, for example, task H in our main example. It could
start as early as tH = t9 = 21, but since it only takes 6 minutes to complete, we
could delay its start a bit without disrupting the project. If we define Tv to be the
time by which task v must start if the project is not to be delayed, then it’s clear
that TH = TZ − 6 = 23. More generally, the latest time at which a task can start
depends on the latest starts of its successors, so that

Tv = min
u∈Sv

(Tu − w(v, u)) . (14.3)

This expression, along with the observation that TZ = tZ , allows us to find Tv for all
tasks by working backwards through the DAG. Figure 14.7 illustrates this for our
main example, while Table 14.3 lists tv and Tv for all vertices v ∈ V .

14.7

0:6

0:30:0

0:0

15:16

12:17

15:15

21:22

21:23 29:29

20:20

0

10

10

12

12

15
15

6

6

3

3

5
5

7

6

9

0

0

Figure 14.7: Here a vertex v is labelled with a pair tv : Tv that shows both the
earliest time tv at which the corresponding task could start and Tv, the latest time
by which the task must start if the whole project is not to be delayed. This project
has only a single critical path, (S,C, F, I, Z), which is highlighted in red.

v S A B C D E F G H I Z
tv 0 0 0 0 15 12 15 21 21 20 29
Tv 0 6 3 0 16 17 15 22 23 20 29

Table 14.3: The earliest starts tv and latest starts Tv for the main example.

14.3.3 Critical paths
Notice that some of the vertices in Figure 14.7 have tv = Tv. This happens because
they lie on a maximal-weight path from S to Z and so a delay to any one of them will
delay the whole project. Such maximal-weight paths play a crucial role in project
management and so there is a term to describe them:

Definition 14.5 (Critical path). A maximal-weight path from S to Z in a task-
dependency graph G(V,E) is called a critical path and G may contain more than
one of them.

Vertices (and hence tasks) that lie off the critical path have Tv > tv and so do not
require such keen supervision.

14.8

	I Notions and Notation
	First Steps in Graph Theory
	The Königsberg Bridge Problem
	Definitions: graphs, vertices and edges
	Standard examples
	A first theorem about graphs

	Representation, Sameness and Parts
	Ways to represent a graph
	Edge lists
	Adjacency matrices
	Adjacency lists

	When are two graphs the same?
	Terms for parts of graphs

	Graph Colouring
	Notions and notation
	An algorithm to do colouring
	The greedy colouring algorithm
	Greedy colouring may use too many colours

	An application: avoiding clashes

	Efficiency of algorithms
	Introduction
	Examples and issues
	Greedy colouring
	Matrix multiplication
	Primality testing and worst-case estimates

	Bounds on asymptotic growth
	Analysing the examples
	Greedy colouring
	Matrix multiplication
	Primality testing via trial division

	Afterword

	Walks, Trails, Paths and Connectedness
	Walks, trails and paths
	Connectedness
	Connectedness in undirected graphs
	Connectedness in directed graphs

	Afterword: a useful proposition

	II Trees and the Matrix-Tree Theorem
	Trees and forests
	Basic definitions
	Leaves and internal nodes
	Kinds of trees

	Three useful lemmas and a proposition
	A festival of proofs by induction
	Graph surgery

	A theorem about trees
	Proof of the theorem

	The Matrix-Tree Theorems
	Kirchoff's Matrix-Tree Theorem
	Tutte's Matrix-Tree Theorem
	Arborescences: directed trees
	Tutte's theorem

	From Tutte to Kirchoff

	Matrix-Tree Ingredients
	Lightning review of permutations
	The Symmetric Group Sn
	Cycles and sign

	Using graphs to find the cycle decomposition
	The determinant is a sum over permutations
	The Principle of Inclusion/Exclusion
	A familiar example
	Three subsets
	The general case
	An example

	Appendix: Proofs for Inclusion/Exclusion
	Proof of Lemma 8.12, the case of two sets
	Proof of Theorem 8.13
	Alternative proof

	Proof of Tutte's Matrix-Tree Theorem
	Single predecessor graphs
	Counting spregs with determinants
	Counting spregs
	An example
	Counting spregs in general

	Proof of Tutte's theorem

	III Eulerian and Hamiltonian Graphs
	Eulerian Multigraphs
	Hamiltonian graphs and the Bondy-Chvátal Theorem
	Hamiltonian graphs
	The closure a graph
	An algorithm to construct [G]
	An example

	The Bondy-Chvátal Theorem
	Afterword

	IV Distance in Graphs and Scheduling
	Distance in Graphs
	Adding weights to edges
	A notion of distance
	Shortest path problems
	Uniform weights & Breadth First Search
	Bellman's equations

	Appendix: BFS revisited

	Tropical Arithmetic and Shortest Paths
	All pairs shortest paths
	Counting walks using linear algebra
	Tropical arithmetic
	Tropical matrix operations
	A tropical version of Bellman's equations

	Minimal-weight paths in a tropical style

	Critical Path Analysis
	Scheduling problems
	From tasks to weighted digraphs
	From weighted digraphs to schedules

	Graph-theoretic details
	Shortest times and maximal-weight paths
	Topological ordering

	Critical paths
	Earliest starts
	Latest starts
	Critical paths

	V Planar Graphs
	Planar Graphs
	Drawing graphs in the plane
	The topology of curves in the plane
	Faces of a planar graph

	Euler's formula for planar graphs
	Planar graphs can't have many edges
	Preliminaries: bridges and girth
	Main result: an inequality relating n and m
	Gritty details of the proof of Theorem 15.12
	The maximal number of edges in a planar graph

	Two non-planar graphs
	Kuratowski's Theorem
	Afterword

