
Lecture 4

Efficiency of algorithms

The development of algorithms (systematic recipes for solving problems) will be a
theme that runs through the whole course. We’ll be especially interested in saying
rigorous-but-useful things about how much work an algorithm requires. Today’s
lecture introduces the standard vocabulary for such discussions and illustrates it with
several examples including the Greedy Colouring Algorithm, the standard algorithm
for multiplication of two square n× n matrices and the problem of testing whether
a number is prime.
Reading:
The material in the first part of today’s lecture comes from Section 2.5 of

Dieter Jungnickel (2013), Graphs, Networks and Algorithms, 4th edition
(available online via SpringerLink),

though the discussion there mentions some graph-theoretic matters that we have
not yet covered.

4.1 Introduction
The aim of today’s lecture is to develop some convenient terms for the way in which
the amount of work required to solve a problem with a particular algorithm depends
on the “size” of the input. Note that this is a property of the algorithm: it may
be possible to find a better approach that solves the problem with less work. If we
were being very careful about these ideas we would make a distinction between the
quantities I’ll introduce below, which, strictly speaking, describe the time complexity
of an algorithm, and a separate set of bounds that say how much computer memory
(or how many sheets of paper, if we’re working by hand) an algorithm requires. This
latter quantity is called the space complexity of the algorithm, but we won’t worry
about that much in this course.

To get an idea of the kinds of results we’re aiming for, recall the standard algo-
rithm for pencil-and-paper addition of two numbers (write one number above the
other, draw a line underneath . . .).

4.1

http://bit.ly/Jungnickel4

2011
21

2032

The basic step in this process is the addition of two decimal digits, for example, in
the first column, 1 + 1 = 2. The calculation here thus requires two basic steps.

More generally, the number of basic steps required to perform an addition a+ b
using the pencil-and-paper algorithm depends on the numbers of decimal digits in
a and b. The following proposition (whose proof is left to the reader) explains why
it’s thus natural to think of log10(a) and log10(b) as the sizes of the inputs to the
addition algorithm.

Definition 4.1 (Floor and ceiling). For a real number x ∈ R, define ⌊x⌋, which
is read as “floor of x”, to be the greatest integer less-than-or-equal-to x. Similarly,
define ⌈x⌉, “ceiling of x”, to be the least integer greater-than-or-equal-to x. In more
conventional notation these functions are given by

⌊x⌋ = max {k ∈ Z | k ≤ x} and ⌈x⌉ = min {k ∈ Z | k ≥ x} .

Proposition 4.2 (Logs and length in decimal digits). The decimal representation
of a number n > 0 ∈ N has exactly d = 1 + ⌊log10(n)⌋ decimal digits.

In light of these results, one might hope to say something along the lines of

The pencil-and-paper addition algorithm computes the sum a+ b
in 1 + min (⌊log10(a)⌋, ⌊log10(b)⌋) steps.

This is a bit of a mouthful and, worse, isn’t even right. Quick-witted readers will
have noticed that we haven’t taken proper account of carried digits. The example
above didn’t involve any, but if instead we had computed

1959
21

1980

we would have carried a 1 from the first column to the second and so would have
needed to do three basic steps: 9 + 1, 1 + 5, and 6 + 2.

In general, if the larger of a and b has d decimal digits then computing a + b
could require as many as d−1 carrying additions. That means our statement above
should be replaced by something like

The number of steps N required for the pencil-and-paper addition algo-
rithm to compute the sum a+ b satisfies the following bounds:

1 + min (⌊log10(a)⌋, ⌊log10(b))⌋) ≤ N ≤ 1 + ⌊log10(a)⌋+ ⌊log10(b)⌋

This introduces an important theme: knowing the size of the input isn’t always
enough to determine exactly how long a computation will take, but it may be possible
to place bounds on the running-time.

4.2

The statements above are rather fiddly and not especially useful. In practice,
people want such estimates so they can decide whether a problem is do-able at
all. They want to know whether, say, given a calculator that can add two 5-digit
numbers in one second1, it would be possible to work out the University of Manch-
ester’s payroll in less than a month. For these sorts of questions2 one doesn’t want
the cumbersome, though precise sorts of statements formulated above, but rather
something semi-quantitative along the lines of:

If we measure the size of the inputs to the pencil-and-paper addition
algorithm in terms of the number of digits, then if we double the size of
the input, the amount of work required to get the answer also doubles.

The remainder of today’s lecture will develop a rigorous framework that we can use
to make such statements.

4.2 Examples and issues
The three main examples in the rest of the lecture will be

• Greedy colouring of a graph G(V,E) with |V | vertices and |E| edges.

• Multiplication of two n× n matrices A and B.

• Testing whether a number n ∈ N is prime by trial division.

In the rest of this section I’ll discuss the associated algorithms briefly, with an eye
to answering three key questions:

(1) What are the details of the algorithm and what should we regard as the basic
step?

(2) How should we measure the size of the input?

(3) What kinds of estimates can we hope to make?

4.2.1 Greedy colouring
Algorithm 3.7 constructs a colouring for a graph G(V,E) by examining, in turn,
the adjacency lists of each of the vertices in V = {v1, . . . , vn}. If we take as our

1Up until the mid-1940’s, a calculator was a person and so the speed mentioned here was not
unrealistic. Although modern computing machinery doesn’t work with decimal representations
and can perform basic operations in tiny fractions of a second, similar reasoning still allows one to
determine the limits of practical computability.

2Estimates similar to the ones we’ve done here bear on much less contrived questions such as: if
there are processors that can do arithmetic on two 500-digit numbers in a nanosecond, how many
of them would GCHQ need to buy if they want to be able to crack a 4096-bit RSA cryptosystem
within an hour?

4.3

basic step the process of looking at neighbour’s colour, then the algorithm requires
a number of steps given by∑

v∈V

|Av| =
∑
v∈V

deg(v) = 2|E| (4.1)

where the final equality follows from Theorem 1.8, the Handshaking Lemma. This
suggests that we should measure the size of the problem in terms of the number of
edges.

4.2.2 Matrix multiplication
If A and B are square, n × n matrices then the i, j-th entry in the product AB is
given by:

(AB)i,j =
n∑

k=1

AikBkj.

Here we’ll measure the size of the problem with n, the number of rows in the matrices,
and take as our basic steps the arithmetic operations, addition and multiplication
of two real numbers. The formula above then makes it easy to see that it takes
n multiplications and (n − 1) additions to compute a single entry in the product
matrix and so, as there are n2 such entries, we need

n2 (n+ (n− 1)) = 2n3 − n2 (4.2)

total arithmetic operations to compute the whole product.
Notice that I have not included any measure of the magnitude of the matrix

entries in our characterisation of the size of the problem. I did this because (a)
it agrees with the usual practice among numerical analysts, who typically analyse
algorithms designed to work with numbers whose machine representations have a
fixed size and (b) I wanted to emphasise that an efficiency estimate depends in
detail on how one chooses to measure size of the inputs. The final example involves
a problem and algorithm where it does make sense to think about the magnitude of
the input.

4.2.3 Primality testing and worst-case estimates
It’s easy to prove by contradiction the following proposition.

Proposition 4.3 (Smallest divisor of a composite number). If n ∈ N is composite
(that is, not a prime), then it has a divisor b that satisfies b ≤

√
n.

We can thus test whether a number is prime with the following simple algorithm:

4.4

Algorithm 4.4 (Primality testing via trial division).
Given a natural number n ∈ N, determine whether it is prime.

(1) For each b ∈ N in the range 2 ≤ b ≤
√
n {

(2) Ask: does b divide n?
If Yes, report that n is composite.
If No, continue to the next value of b.

(3) }

(4) If no divisors were found, report that n is prime.

This problem is more subtle than the previous examples in a couple of ways. A
natural candidate for the basic step here is the computation of (n mod b), which
answers the question “Does b divide n?”. But the kinds of numbers whose primality
one wants to test in, for example, cryptographic applications are large and so we
might want take account of the magnitude of n in our measure of the input size.
If we compute (n mod b) with the standard long-division algorithm, the amount of
work required for a basic step will itself depend on the number of digits in n and so,
as in our analysis of the pencil-and-paper addition algorithm, it’ll prove convenient
to measure the size of the input with d = log10(n), which is approximately the
number of decimal digits in n.

A further subtlety is that because the algorithm reports an answer as soon as
it finds a factor, the amount of work required varies wildly, even among n with the
same number of digits. For example, half of all 100-digit numbers are even and so
will be revealed as composite by the very first value of b we’ll try. Primes, on the
other hand, will require ⌊

√
n⌋ − 1 tests. A standard way to deal with this second

issue is to make estimates about the worst case efficiency: in this case, that’s the
running-time required for primes. A much harder approach is to make an estimate
of the average case running-time obtained by averaging over all inputs with a given
size.

4.3 Bounds on asymptotic growth
As the introduction hinted, were really after statements about how quickly the
amount of work increases as the size of the problem does. The following definitions
provide a very convenient language in which to formulate such statements.

Definition 4.5 (Bounds on asymptotic growth). The rate of growth of a function
f : N → R+ is often characterised in terms of some simpler function g : N → R+ in
the following ways

• f(n) = O(g(n)) if ∃ c1 > 0 such that, for all sufficiently large n, f(n) ≤ c1g(n);

• f(n) = Ω(g(n)) if ∃ c2 > 0 such that, for all sufficiently large n, f(n) ≥ c2g(n);

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

4.5

Notice that the definitions of f(n) = O(g(n)) and f(n) = Ω(g(n)) include the phrase
“for all sufficiently large n”. This is equivalent to saying, for example,

f(n) = Ω(g(n)) if there exist some c1 > 0 and N1 ≥ 0 such that for all
n ≥ N1, f(n) ≤ c1g(n).

The point is that the definitions are only concerned with asymptotic bounds—they’re
all about the limit of large n.

4.4 Analysing the examples
Here I’ll apply the definitions from the previous section to our three examples. In
practice people are mainly concerned with the O-behaviour of an algorithm. That
is, they are mainly interested in getting an asymptotic upper bound on the amount
of work required. This makes sense when one doesn’t know anything special about
the inputs and is thinking about buying computer hardware, but as an exercise I’ll
obtain Θ-type bounds where possible.

4.4.1 Greedy colouring
Proposition 4.6 (Greedy colouring). If we take the process of checking a neighbour’s
colour as the basic step, greedy colouring requires Θ(|E|) basic steps.

We’ve already argued that the number of basic steps is 2|E|, so if we take c1 = 3
and c2 = 1 we have, for all graphs, that the number of operations f(|E|) = 2|E|
required for the greedy colouring algorithm satisfies

c2|E| ≤ f(|E|) ≤ c1|E| or |E| ≤ 2|E| ≤ 3|E|

and so the algorithm is both O(|E|) and Ω(|E|) and hence is Θ(|E|).

4.4.2 Matrix multiplication
Proposition 4.7 (Matrix multiplication). If we characterise the size of the inputs
with n, the number of rows in the matrices, and take as our basic step the arith-
metic operations of addition and multiplication of two matrix entries, then matrix
multiplication requires Θ(n3) basic steps.

We argued in Section 4.2.2 that the number of arithmetic operations required to
multiply a pair of n × n matrices is f(n) = 2n3 − n2. It’s not hard to see that for
n ≥ 1,

n3 ≤ 2n3 − n2 or equivalently 0 ≤ n3 − n2

and so f(n) = Ω(n3). Further, it’s also easy to see that for n ≥ 1 we have

2n3 − n2 ≤ 3n3 or equivalently − n3 − n2 ≤ 0,

and so we also have that f(n) = O(n3). Combining these bounds, we’ve established
that

f(n) = Θ(n3),

4.6

which is a special case of a more general result. One can prove—see the Problem
Sets—that if f : N → R+ is a polynomial in n of degree k, then f = Θ(nk). Algo-
rithms that are O(nk) for some k ∈ R are often called polynomial time algorithms.

4.4.3 Primality testing via trial division
Proposition 4.8 (Primality testing). If we characterise the size of the input with
d = log10(n) (essentially the number of decimal digits in n) and take as our basic
step the computation of n mod b for a number 2 ≤ b ≤

√
n, then primality testing

via trial division requires O(10d/2) steps.

In the most demanding cases, when n is actually prime, we need to compute
n mod b for each integer b in the range 2 ≤ b ≤

√
n. This means we need to do

⌊
√
n⌋ − 1 basic steps and so the number of steps f(d) required by the algorithm

satisfies

f(d) ≤ ⌊
√
n⌋ − 1

≤ ⌊
√
n⌋

≤
√
n.

To get the righthand side in terms of the problem size d = ⌊log10(n)⌋+1, note that,
for all x ∈ R, x < ⌊x⌋+ 1 and so

log10(n) < d.

Then √
n = n1/2 =

(
10log10(n)

)1/2
which implies that

f(d) ≤
√
n

≤
(
10log10(n)

)1/2
≤

(
10d

)1/2
≤ 10d/2,

and thus that primality testing via trial division is O(10d/2).
Such algorithms are often called exponential-time or just exponential and they

are generally regarded as impractical for, as one increases d, the computational
requirements can jump abruptly from something modest and doable to something
impossible. Further, we haven’t yet taken any account of the way the sizes of the
numbers n and b affect the amount of work required for the basic step. If we were to
do so—if, say, we choose single-digit arithmetic operations as our basic steps—the
bound on the operation count would only grow larger: trial division is not a feasible
way to test large numbers for primality.

4.7

4.5 Afterword
I chose the algorithms discussed above for simplicity, but they are not necessarily
the best known ways to solve the problems. I also simplified the analysis by judi-
cious choice of problem-size measurement and basic step. For example, in practical
matrix multiplication problems the multiplication of two matrix elements is more
computationally expensive than addition of two products, to the extent that people
normally just ignore the additions and try to estimate the number of multiplications.
The standard algorithm is still Θ(n3), but more efficient algorithms are known. The
basic idea is related to a clever observation about the number of multiplications
required to compute the product of two complex numbers

(a+ ib)× (c+ id) = (ac− bd) + i(ad+ bc). (4.3)

The most straightforward approach requires us to compute the four products ac,
bd, ad and bc. But Gauss noticed that one can instead compute just three products,
ac, bd and

q = (a+ b)(c+ d) = ac+ ad+ bc+ bd,

and then use the relation
(ad+ bc) = q − ac− bd

to compute the imaginary part of the product in Eqn. (4.3). In 1969 Volker Strassen
discovered a similar trick whose simplest application allows one to compute the
product of two 2 × 2 matrices with only 7 multiplications, as opposed to the 8
that the standard algorithm requires. Building on this observation, he found an
algorithm that can compute all the entries in the product of two n × n matrices
using only O(nlog2(7)) ≈ O(n2.807) multiplications3.

More spectacularly, it turns out that there is a polynomial-time algorithm for
primality testing. It was discovered in the early years of this century by Agrawal,
Kayal and Saxena (often shortened to AKS)4. This is particularly cheering in that
two of the authors, Kayal and Saxena, were undergraduate project students when
they did this work.

3I learned about Strassen’s work in a previous edition of William H. Press, Saul A. Teukolsky,
William T. Vetterling and Brian P. Flannery (2007), Numerical Recipes in C++, 3rd edition, CUP,
Cambridge. ISBN: 978-0-521-88068-8, which is very readable, but for a quick overview of the area
you might want to look at Sara Robinson (2005), Toward an optimal algorithm for matrix
multiplication, SIAM News, 38(9).

4See: Manindra Agrawal, Neeraj Kayal and Nitin Saxena (2004), PRIMES is in P, Annals of
Mathematics, 160(2):781–793. DOI: 10.4007/annals.2004.160.781. The original AKS paper
is quite approachable, but an even more reader-friendly treatment of their proof appears in An-
drew Granville (2005), It is easy to determine whether a given integer is prime, Bulletin of the
AMS, 42:3–38. DOI: 10.1090/S0273-0979-04-01037-7.

4.8

https://archive.siam.org/news/news.php?id=174
https://archive.siam.org/news/news.php?id=174
http://dx.doi.org/10.4007/annals.2004.160.781
http://dx.doi.org/10.1090/S0273-0979-04-01037-7

	I Notions and Notation
	First Steps in Graph Theory
	The Königsberg Bridge Problem
	Definitions: graphs, vertices and edges
	Standard examples
	A first theorem about graphs

	Representation, Sameness and Parts
	Ways to represent a graph
	Edge lists
	Adjacency matrices
	Adjacency lists

	When are two graphs the same?
	Terms for parts of graphs

	Graph Colouring
	Notions and notation
	An algorithm to do colouring
	The greedy colouring algorithm
	Greedy colouring may use too many colours

	An application: avoiding clashes

	Efficiency of algorithms
	Introduction
	Examples and issues
	Greedy colouring
	Matrix multiplication
	Primality testing and worst-case estimates

	Bounds on asymptotic growth
	Analysing the examples
	Greedy colouring
	Matrix multiplication
	Primality testing via trial division

	Afterword

	Walks, Trails, Paths and Connectedness
	Walks, trails and paths
	Connectedness
	Connectedness in undirected graphs
	Connectedness in directed graphs

	Afterword: a useful proposition

	II Trees and the Matrix-Tree Theorem
	Trees and forests
	Basic definitions
	Leaves and internal nodes
	Kinds of trees

	Three useful lemmas and a proposition
	A festival of proofs by induction
	Graph surgery

	A theorem about trees
	Proof of the theorem

	The Matrix-Tree Theorems
	Kirchoff's Matrix-Tree Theorem
	Tutte's Matrix-Tree Theorem
	Arborescences: directed trees
	Tutte's theorem

	From Tutte to Kirchoff

	Matrix-Tree Ingredients
	Lightning review of permutations
	The Symmetric Group Sn
	Cycles and sign

	Using graphs to find the cycle decomposition
	The determinant is a sum over permutations
	The Principle of Inclusion/Exclusion
	A familiar example
	Three subsets
	The general case
	An example

	Appendix: Proofs for Inclusion/Exclusion
	Proof of Lemma 8.12, the case of two sets
	Proof of Theorem 8.13
	Alternative proof

	Proof of Tutte's Matrix-Tree Theorem
	Single predecessor graphs
	Counting spregs with determinants
	Counting spregs
	An example
	Counting spregs in general

	Proof of Tutte's theorem

	III Eulerian and Hamiltonian Graphs
	Eulerian Multigraphs
	Hamiltonian graphs and the Bondy-Chvátal Theorem
	Hamiltonian graphs
	The closure a graph
	An algorithm to construct [G]
	An example

	The Bondy-Chvátal Theorem
	Afterword

	IV Distance in Graphs and Scheduling
	Distance in Graphs
	Adding weights to edges
	A notion of distance
	Shortest path problems
	Uniform weights & Breadth First Search
	Bellman's equations

	Appendix: BFS revisited

	Tropical Arithmetic and Shortest Paths
	All pairs shortest paths
	Counting walks using linear algebra
	Tropical arithmetic
	Tropical matrix operations
	A tropical version of Bellman's equations

	Minimal-weight paths in a tropical style

	Critical Path Analysis
	Scheduling problems
	From tasks to weighted digraphs
	From weighted digraphs to schedules

	Graph-theoretic details
	Shortest times and maximal-weight paths
	Topological ordering

	Critical paths
	Earliest starts
	Latest starts
	Critical paths

	V Planar Graphs
	Planar Graphs
	Drawing graphs in the plane
	The topology of curves in the plane
	Faces of a planar graph

	Euler's formula for planar graphs
	Planar graphs can't have many edges
	Preliminaries: bridges and girth
	Main result: an inequality relating n and m
	Gritty details of the proof of Theorem 15.12
	The maximal number of edges in a planar graph

	Two non-planar graphs
	Kuratowski's Theorem
	Afterword

