
Solutions for MATH20902: Discrete Mathematics, End-of-Term Formative Assessment 2020

Question Learning Outcome Solution

A1 ILO6 – Construct the adjacency
matrix of a graph and exploit
the connection between powers
of the adjacency matrix to count
walks. Also, define the operations
of tropical arithmetic, construct
the weight matrix associated with
a weighted graph and use its trop-
ical matrix powers to find the
lengths of shortest paths.

The definition is bookwork, as is the construction of the adjacency matrix, but the last part of the question tests ILO6
at an intermediate level as the proof requested there is, though not difficult, unseen.

(a) • A vertex v in a digraph is reachable from another vertex u if there is a walk from u to v. Additionally, we
say that a vertex is reachable from itself.

• A digraph G(V,E) is strongly connected if it, for each pair of vertices u, v ∈ V , u is reachable from v and v
is reachable from u.

(b) For a digraph G(V,E) with vertex set V = {v1, . . . , vn}, the adjacency matrix A is an n×n matrix whose entries
are given by

Aij =

{
1 If (vi, vj) ∈ E
0 Otherwise

For the matrix in the question, this means
A =

[
0 1
1 0

]
.

(c) The proposition is false and the graph from part (b) provides a suitable counterexample: it is clearly strongly
connected, yet

Aℓ =

{
A If ℓ is odd
I2 If ℓ is even

where I2 is the 2 × 2 identity matrix. One can prove this in various ways, but I hope people will mention that
Aℓ

ij , the i, j-entry in Aℓ, is the number of walks of length ℓ from vi to vj . In the graph at hand there are only two
walks of length ℓ for each ℓ ≥ 1 and they differ only in where they start. Further, walks of even length finish on
the vertex where they started, while those of odd length finish on the other vertex.
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Question Learning Outcome Solution

A2 ILO5 – Construct the graph
Laplacian and apply the Matrix-
Tree Theorem to count the num-
ber of spanning trees or span-
ning arborescences contained in a
graph.

The question tests ILO5 at both basic and intermediate levels as construction of the graph Laplacan and the application
of Tutte’s Matrix-Tree theorem are bookwork, but the counting of spregs containing cycles requires an understanding of
the key lemma in the proof of the theorem.

(a) • A spanning arborescence rooted at v for a digraph G(V,E) is a subgraph T (V,E′) with the properties that:
(i) it contains every vertex from G(V,E);
(ii) every vertex is reachable from the root v;
(iii) if one ignores the directedness of the edges, the resulting graph |T | is a tree.

• Spreg—short for “single predecessor graph”—is a term unique to this module. A spreg with distinguished
vertex v is a digraph in which degin(u) = 1 if u ̸= v and degin(v) = 0.

(b) A theorem of Tutte says that the number of spanning arborescences in a digraph G(V,E) can be computed as
follows.

• Build a matrix L, the graph Laplacian, whose entries are given by

Li,j =

 degin(vj) If i = j
−1 If i ̸= j and (vi, vj) ∈ E
0 Otherwise

Here the relevant matrix is

L =


2 −1 0 −1

−1 3 −1 0
0 −1 2 −1

−1 −1 −1 2

 .

To count the spanning arborescences rooted at vj , delete the j-th row and column of L to form L̂j . Here, as
we want arborescences rooted at v3, that’s

L̂3 =

 2 −1 −1
−1 3 0
−1 −1 2

 .

The desired number of arborescences is then det(L̂3) = 6.

(c) To specify a spreg with distinguished vertex v3 one need only list the (single) predecessors of all the vertices other
than v3. The presence of the cycle fixes the predecessors of all the other vertices, so there is exactly one such spreg.
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Question Learning Outcome Solution

A3 ILO7 – Given a project defined
by a set of tasks, along with their
their durations and prerequisites,
use critical path analysis to deter-
mine how quickly the project can
be completed.

This is all bookwork: similar problems appear in examples sheets and on all available past papers. ILO7 tested at the
level of competence.

(a) Here is a suitable graph.
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In addition to the vertices A–I representing the tasks there is a start vertex S and a finish vertex Z. The edge
weights are the time required to complete the task at the tail vertex.

(b) In the graph below the vertices and edges on the critical path, C − F − I, are coloured green: they indicate that
it will take a minimum of 29 days to complete the job. Those tasks that lie off the critical path are labelled with
a pair (t : T ) where t is the earliest day on which the task could start and T the latest by which it must start if
the project is to be completed in minimal time.
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(c) The table, which one can read off the diagram above, is below

Task A B C D E F G H I
Earliest possible start 0 0 0 15 12 15 21 21 20
Latest possible start 6 3 0 16 17 15 22 23 20
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Question Learning Outcome Solution

B4 ILO3 – Say what it means for
a graph to be Eulerian and de-
termine whether small graphs or
multigraphs are Eulerian.

ILO4 – Say what it means for
a graph to be Hamiltonian and
use the Bondy-Chávtal theorem
to prove that a graph is Hamilto-
nian.

ILO8 – Say what it means for
a graph to be planar; state and
apply Kuratowski’s theorem and
determine whether a graph is pla-
nar or not.

The definitions are bookwork, as is the proof in part (b), but the reasoning required to support the answers in part (c)
requires integration and deployment of key results from the sections of the course on Eulerian, Hamiltonian and planar
graphs: ILO’s 3, 4 and 8 are thus tested at a high level.

(a) • A graph G(V,E) is Hamiltonian if it contains a cycle that includes every vertex in V .
• A graph G(V,E) has an Eulerian tour or is Eulerian if it contains a closed trail that includes every edge in

E.
• A planar graph G(V,E) is one that has a planar diagram: a drawing in which the vertices are shown as points

(or disks) and the edges are represented by line segments or arcs that connect the points (centres of disks)
corresponding to the vertices on which the edge is incident. These arcs are allowed to intersect only at the
vertices.

• The girth of a graph is the length of its shortest cycle. The girth is undefined for acyclic graphs.

(b) We are free to imagine that the underlying N -element set is {1, . . . , N} and to indicate its two-element subsets
by {j, k}, where j ̸= k and j, k ∈ {1, . . . , N}.
Now consider a particular vertex {j, k}. There are (N − 2) elements in the underlying set that are different from
both j and k and each such element gives rise to a pair of vertices adjacent to {j, k}. That is, for each i such
that i ̸= j and i ̸= k, we have two distinct adjacent vertices: one corresponding to the subset {i, j} and another
corresponding to {i, k}. Thus there are 2(N − 2) = 2N − 4 distinct vertices adjacent to {j, k} or, equivalently,
deg({j, k}) = 2N − 4.

(c) Both the yes/no answer and the supporting argument are important here.

• The triangular graph T6 is connected and every vertex has degree 12− 4 = 8, an even number. Hence T6 is
Eulerian.

• T6 must be Hamiltonian. Let us refer to its vertex set as V . Then

|V | =
(

6
2

)
=

6× 5

2
= 15

and, as we argued above, each has degree 8. But then deg(v) ≥ |V |/2 for all v ∈ V and so [T6], the closure
of T6, is isomorphic to K15 and the Bondy-Chvátal theorem implies that T6 is Hamiltonian. Students could
also invoke Dirac or Ore’s Theorems, though we obtain those as corollaries of Bondy-Chvátal.

• The girth of T6 is three, the smallest value it could possibly have. To see this, imagine that we use pairs
drawn from the six-element set {1, . . . , 6} to label the vertices and specify the vertices as in part (b) above.
Then the subgraph induced by {{1, 2}, {2, 3}, {3, 1}} consists of a cycle of length 3.

• In a planar graph on n vertices the number of edges m is bounded by

m ≤ 3n− 6.

For T6 the Handshaking Lemma says m = (15× 8)/2 = 60, while 3n− 6 = 3× 15− 6 = 39, so T6 has far too
many edges to be planar.
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• As T6 is nonplanar, we know from Kuratowski’s Theorem that it contains a subgraph homeomorphic to K5

or one homeomorphic to K3,3. The question asks specifically about K5. In fact, there are six subgraphs
isomorphic (and hence automatically homeomorphic) to K5 and the vertex set of any one of them makes
clear what the others must be like. If we use the same notation as in the question about girth, the subgraph
induced by the vertices

V ′ = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}

is clearly isomorphic to K5 as all these vertices share the element 1, so all are adjacent to each other.

5



Question Learning Outcome Solution

B5 ILO2 – Explain what the chro-
matic number of a graph is, deter-
mine it for small graphs and ap-
ply the idea to scheduling prob-
lems.

The question tests ILO2 at both a basic level—as the reduction of problems about clashes to graph-colouring is well-
explored in lecture and in the problem sets.

(a) • A k-colouring of a graph G(V,E) is a map Φ : V → {1, . . . , k} with the property that (u, v) ∈ E ⇒ Φ(u) ̸=
Φ(v).

• The chromatic number χ(G) of a graph G is the smallest k for which G has a k-colouring.

(b) The greedy colouring algorithm, which was discussed in lecture, will certainly be able to construct a ∆(G) + 1
colouring. For when we come to choose a colour for some v ∈ V it will have, at most, ∆(G) neighbours and so,
with ∆(G)+1 colours available, there will always be an unused one that we can assign as Φ(v). And the existence
of a (∆(G) + 1)-colouring implies that χ(G) ≤ ∆(G) + 1. This bound is sharp, as every vertex in the complete
graph Kn has degree (n − 1), so ∆(Kn) = (n − 1). But then χ(Kn) = n = ∆(Kn) + 1. Another nice family of
examples are the odd-length cycle graphs C2k+1. They have

χ(C2k+1) = 3 = 2 + 1 = ∆(C2k+1) + 1.

(c) The idea is to construct and colour a graph whose vertices represent animals and whose edges connect animals
that should not be housed together. The chromatic number of this graph is then the minimal number of enclosures
and a corresponding colouring tells us how to house the animals: all the animals assigned the same colour go in
the same enclosure. A suitable graph G is
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which has been coloured using three colours. On the one hand, this establishes that χ(G) ≤ 3, but on the other
hand G contains a cycle of odd length, so we also know χ(G) ≥ 3. Thus χ(G) = 3.

(d) The corresponding graph is isomorphic to the path graph P3 which is illustrated below below and clearly has
χ(P3) = 2.
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(e) Here the idea is to choose a set of intervals so that the corresponding graph is isomorphic to K4. There are lots of
ways to accomplish this, but one simple approach is to use nested intervals: I1 ⊂ I2 ⊂ I3 ⊂ I4. Thus, for example,
the interval graph defined by I1 = [0, 1], I2 = [0, 2], I3 = [0, 3] and I4 = [0, 4] has chromatic number 4.
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B6 ILO1 – Define what it means
for two graphs to be isomorphic
and determine, with rigorous sup-
porting arguments, whether two
(small) graphs are isomorphic.

The definitions are bookwork and parts – are close to homework problems, though they’re still difficult, so the question
tests ILO1 at a high level.

(a) • The degree sequence of a graph G(V,E) is a list of the degrees of G’s vertices, arranged in ascending order.
• Two graphs G1(V1, E1) and G2(V2, E2) are said to be isomorphic if there exists a bijection α : V1 → V2 with

with property that given two vertices a, b ∈ V1, the edge (a, b) is in E1 if and only if (α(a), α(b)) ∈ E2. In
words: the two graphs are isomorphic if one can convert G1 into G2 by relabelling the vertices.

• A tree is a connected, acyclic graph.

(b) The statement is false, as is illustrated by the two graphs below. Both have degree sequence {1, 1, 2, 2, 2, 4}, but
they’re clearly non-isomorphic as the two vertices of degree 1 are both adjacent to the sole vertex of degree four
in the graph on the left, but not in the one at right.

(c) This statement is true. It’s a special case of the Handshaking Lemma, which says that for an arbitrary graph
G(V,E) ∑

v∈V

deg(v) =

n∑
j=1

dj = 2|E|. (1)

For a tree, we’ve proved in lecture that |E| = |V | − 1.

(d) This is also true, and is also a consequence of the Handshaking Lemma and the fact that |E| = |V | − 1 for a tree.
Say that the tree has k leaves or equivalently, that it has k vertices of degree 1. Then the remaining vertices have
degree 2 or more and we can write

n∑
j=1

dj ≥ k + 2 (|V | − k) = 2n− k.

On the other hand, we have (1) with |E| = |V | − 1 = n− 1 so

2|E| = 2n− 2 ≥ 2n− k or k ≥ 2, (2)

which establishes that d1 = d2 = 1.
To see that dn > 1, suppose otherwise—suppose dn = 1. Then, as the dj are arranged in ascending order, it must
be true that dj = 1 for all 1 ≤ j ≤ n and so

n∑
j=1

dj = n.

But this is incompatible with the Handshaking Lemma, for when n ≥ 3, it’s easy to see that n < 2(n− 1).
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(e) This is also true, as one can prove by induction on the number of entries in D. Take n = 2 as the base case. Then∑n
j=1 dj = 2n − 2 = 2, which implies that d1 = d2 = 1. And this is certainly compatible with {1, 1}, the degree

sequence of K2, the only two-vertex tree.
Now suppose the result is true for all positive, non-decreasing sequences of length 2 ≤ n ≤ n0 that satisfy∑n

j=1 dj = 2(n− 1). Consider a sequence

D = {d1, d2, . . . , dn0+1}.

with the property that
n0+1∑
j=1

dj = 2((n0 + 1)− 1) = 2n0.

Reasoning essentially identical to that in part (d) above establishes that d1 = d2 = 1 and dn0+1 > 1. This in turn
implies that somewhere in the sequence dj jumps from 1 to some larger value. That is, there is a k in the range
2 < k ≤ n0 + 1 such that dk−1 = 1, but dk > 1. Form a new, shorter sequence

D′ =
{
d′1, . . . , d

′
n0

}
= {d2, . . . dk−1, (dk − 1), dk+1, . . . , dn0+1} .

D′ has only n0 entries, is arranged in ascending order and has the property
n0∑
j=1

d′j = d2 + d3 + · · ·+ (dk − 1) + · · ·+ dn0+1

=

n0+1∑
j=1

dj

− d1 − 1

= 2n0 − 2

= 2(n0 − 1).

Hence the inductive hypothesis tells us that there is a tree whose degree sequence is D′. Further, this tree has a
vertex—call it vk—whose degree is (dk − 1). And if we attach a single leaf to this vertex we increase its degree by
one and create a tree whose degree sequence is D.

8


