Feedback About 2020°’s End-of-Term Formative Assessment

MATH20902: Discrete Mathematics

General remarks

e This assessment was not an exam, so there are no numerical marks to summarise. In any
case, only 13 students submitted work, so there is not a lot to report.

e The notes about individual problems easier to follow if you have a copy of the assignment.

Remarks about individual problems

A1 People did well on this question, which is unsurprising as it appeared on 2017’s exam and
most of its solution is implicit in the Feedback.

(a)

Most students were able to give correct definitions for the terms reachable and strongly
connected (both appear in the lecture titled Walks, Trails, Paths and Connectedness),
but one or two seemed not to realise that these terms are applicable only to directed
graphs and so wrote, incorrectly, about “adjacent” vertices. There was also some im-
precision in writing that spoiled definitions.

Almost everyone wrote down the correct adjacency matrix,
0 1
for the graph that appears in the question. The few mistakes that I saw involved

incomplete explanations about how to construct the adjacency matrix of an arbitrary
graph. This material appears in the lecture titled Representation, Sameness and Parts.

Most students realised that the graph in part (b) provides a counterexample to the claim
here. The key observation is that if A is the adjacency matrix constructed in part (b),
then

A[:{A If £ is odd

I If ¢ is even

where I is the 2 x 2 identity matrix. A few students merely computed a couple of
examples of matrix-powers—typically A% and A3—which does not provide a proof that
A* contains zeroes for all £ € N. Ideally one would prove this by induction, though none
of the papers I read did this.

A2 This problem came from 2018’s exam.

(a)

As in question Al, most students gave good definitions here. Such shortcomings as
there were came from:

e neglecting to explain key terms such as rooted or spanning;

e giving definitions that were too terse. So, for example, it was not enough to say
A spanning arborescence in a directed graph G(V, E) is an arborescence that
includes all the vertices in V.

without explaining what an arborescence is. Similarly, it’s not enough to say
A directed graph T(V, E) is an arborescence if T contains a root and the
graph |T| that one obtains by ignoring the directedness of the edges is a
tree.
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without saying what a root is. On the other hand, you wouldn’t need to define tree.

The principle here is that if a group of definitions appear in quick succession (those
for root, arborescence and spanning arborescence are Definitions 7.6-7.8 and all
appear one after the other in the printed lecture notes), then you need to spell
out any and all of them that you use. So, for example, a good definition could be
something like:
An arborescence rooted at v is a directed graph T(V, E) in which all other
vertices are reachable from v and which becomes a tree when one ignores
the directedness of the edges.

This definition doesn’t use the term root, but instead explains that the vertex v must
have the properties of a root. On the other hand, it does use the terms reachable
and tree without further explanation, but that’s okay as both were defined in earlier
lectures.

(b) One can count spanning arborescences either with Tutte’s Matrix Tree Theorem (and
it’s good to explain that this is what you're doing) or by drawing all associated spregs
and then counting those that are spanning arborescences. The Matrix-Tree strategy
was both more common and more generally successful, though there were a few small
numerical mistakes in the construction of L and the evaluation of det(Ls).

(c) Here I hoped students would either use the result from Proposition 9.4, which is about
spregs that contain a single directed cycle, or use the approach from lecture to enumerate
the relevant spregs, noting that the presence of the cycle (v1, vy, v2,v1) fixes the (single)
predecessors of all those vertices that have one, so there can be only one such spreg.
Most did this, but a few wrote cryptic, incorrect numerical answers with no supporting
argument.

A3 Problems such as this one are standard parts of Discrete Maths exams, so people seem to have
studied the topic carefully: all the answers I saw were largely correct, with only a few small
mistakes, particularly in the computation of the latest possible starts. The correct times are
listed below.

Task A B C D E F G H I
Earliest possible start | 0 0 0 15 12 15 21 21 20
Latest possible start 6 3 0 16 17 15 22 23 20

B4 A problem similar to this appeared on 2018’s exam.

(a) The rather long list of definitions went well, though I saw a few small mistakes such as:

e saying that an an Eulerian tour is a cycle or a closed path. While this is possible, it
isn’t always true, as is illustrated in the graph below. The closed trail specified by
the vertex sequence (s,w,x,z,y,w,u,s) is an Eulerian tour (traverses every edge
exactly once and starts and finishes at the same vertex), but it is not a cycle.

N X

u y
e Some students neglected to mention planar diagrams in their definition of a planar
graph, or when they did mention them, didn’t describe them accurately.
Also, I found it odd that same students wrote
A graph is planar if it contains a planar diagram.

Strictly speaking, this is wrong: graphs don’t “contain” diagrams, they “have” them.



(b)
(c)

Students did well on this, which is unsurprising as the same question appears as part of
Problem 8 in Problem Set 1, for which complete solutions are available.

The main issues were as follows:

Eulerian? Most people observed that all the vertices in Tg have even degree, but
a correct answer also needed to say that Ty is connected to establish that it is
Eulerian.

Hamiltonian? Many students (correctly) invoked one of Dirac’s, Ore’s or the Bondy-
Chvatal Theorem, but a few forgot to mention |V| = n = 15, an important in-
gredient in all these arguments. One student constructed an explicit Hamiltonian
tour.

girth? Most people chose the simplest approach to this problem and gave an example
of a cycle of length 3, which is the shortest possible cycle in an undirected graph.

planar? Almost all students answered correctly, saying that Ts can’t planar as it has far
too many edges, but not as many as I had hoped gave good supporting arguments.
One should use the inequalities proved over the last two weeks of lectures. The
relevant one here says that if G(V, E) is planar, then |E| < 3|V| — 6.

contains K57 A few people tried to use Kuratowski’s theorem here, but that’s not so
helpful as it only tells us that Ts must contain K3 3 or K5 homeomorphically. In fact
T contains six subgraphs isomorphic to K5 and the vertex set of any one of them
makes it clear what the others must be like. If we take the underlying six-element
set to be {a,b,c,d,e, f} and write its two-element subsets as pairs of letters then
the vertices

{ab,ac,ad,ae,af}

are all connected to each other (all share an a) and so clearly induce a subgraph
isomorphic to K.

B5 This too is an old exam problem, though I last used it in 2015.

(a)
(b)
(¢)

(d)
()

The definitions went well.
This also went well, unsurprisingly, as it is part of Problem 4 on Problem Set 2.

Most people gave reasonably good answers here too, perhaps again becasue the problem
is essentially the same as Problem 2 on Problem Set 2. Most of the answers I saw would
have been improved by an explanation of how to reduce the problem about the minimal
number of enclosures to one about graph colouring.

This problem was easy for anyone who had done this year’s coursework.

This problem, too, was easy for those who had done the coursework.

B6 This problem appeared on 2016’s exam.

(a)
(b)

(c)
(d)

The definitions went well, which was especially cheering as previous students have often
made mistakes with the definition of isomorphic.

Everyone agreed that the statement here was false and found the only counterexample.
The proofs of non-isomorphism, all done by contradiction, were also generally clear and
correct.

Most students recognised that that is just an application of the Handshaking Lemma to
trees, where we know |E| = |V| — 1, but a few offered much more elaborate arguments.

I saw several clear, correct arguments here, but also a number of confused ones. Both
di = do =1 and d,, > 1 follow readily from the Handshaking Lemma in the form used
in part (¢). Also, the chapter of the lecture notes entitled Trees & Forests includes a
full proof for a result, Lemma 6.1, that is equivalent to d; = dy = 1.

This is a somewhat harder question and few students gave wholly satisfactory proofs,

even though the necessary arguments appear in the solution to Problem 7 from Problem
Set 3.



