
Feedback About 2019’s Exam in
MATH20902: Discrete Mathematics
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Figure 1: Histograms of the raw exam results (left panel) and final marks (right panel). The
histogram of total marks (where “total” means exam plus coursework) has been shaded to indicate
degree classes. These plots include data for all 123 students who sat the exam.

General remarks
• The final marks summarised in the panel at right above have not been adjusted to take

account of Mitigating Circumstances nor have they been moderated (that is, scaled) to make
them more comparable to other exams in the School.

• Many people did very well on the exam: although there were no perfect papers, 18 students
had exam marks of 65 or better (where the maximum possible was 80). Here is a summary
of the final marks, by degree class.

Result: First 2(i) 2(ii) Third Fail
Range: 70–100 60–69 50–59 40–49 0–39

Number of students: 58 26 28 8 3
Fraction of students: 47.2% 21.1% 22.8% 6.5% 2.4%

• Around a sixth of all students attempted all three of the part B problems. For these students
only the best two part B scores contributed to the total exam mark.

Part B problems attempted: B4 & B5 B4 & B6 B5 & B6 All
Number of students: 33 61 8 21

• These notes about individual problems easier to follow if you have a copy of the exam.
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Figure 2: Histograms for the individual questions: note that the vertical scale varies from question
to question. Those for the required Part A questions (10 marks apiece) are plotted light blue, while
those for the Part B questions (best two out of three, 25 marks apiece) are slightly darker. In the
latter group, some of the very lowest marks come from students who attempted all three part B
questions and so these scores didn’t usually contribute to the total exam mark.

Remarks about individual problems
A1 People did well on this question: the average was around 7.5, with 34 perfect scores.

(a) Almost everyone got the 3 marks associated with the definitions, though a handful of
students defined the degree sequence as “the set of the degrees of the vertices …” when,
in fact, it is a list of the degrees. This is an important distinction as we know, from the
problem sets, that the degree sequence of a graph always includes at least one repeated
entry, while a set cannot have two elements with the same value.
As seems to happen every year, a few students lost a mark in the definition of isomor-
phism for saying

. . . (α(u), α(v)) ∈ V2 ⇒ (u, v) ∈ V1.

instead of
. . . (α(u), α(v)) ∈ V2 if and only if (u, v) ∈ V1.

and, finally, quite a few students included odd, extraneous remarks in the definitions
of isomorphic: things such as |V1| = |V2|, which are consequences of the definition, but
not part of it. I didn’t deduct any marks for this, but it is bad mathematical style.

(b) Most students realised that the statement in the exam is false and offered the coun-
terexample below

u1 v1

v2

v3

v4

v5

u2 u3 u4 u5
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This accounted for two of the four marks available here, while the remaining two were for
the proof, which most students handled by contradiction. A surprisingly large minority
of students drew examples of multigraphs here, and so got little or no credit.

(c) Most students realised that (1, 3, 4, 4, 4) can’t be the degree sequence of any graph,
and almost everyone managed to prove this by contradiction. Here again, there were
occasional odd statements about multigraphs

A2 Perhaps because similar questions have appeared on many recent exams, this proved a fairly
easy question: the average was 7.7/10.

(a) As in question A1, most students got most of the marks available for definitions. Those
who lost marks made two main kinds of mistakes.

• Some neglected to explain key terms such as rooted or spanning.
• Some gave definitions that were too terse. So, for example, it was not enough to

say
A spanning arborescence in a directed graph G(V,E) is an arborescence that
includes all the vertices in V .

without explaining what an arborescence is. Similarly, it’s not enough to say
A directed graph T (V,E) is an arborescence if T contains a root and the
graph |T | that one obtains by ignoring the directedness of the edges is a
tree.

without saying what a root is. On the other hand, you wouldn’t need to define tree.

The principle here is that if a group of definitions appear in quick succession (those
for root, arborescence and spanning arborescence are Definitions 7.6–7.8 and all
appear one after the other in the printed lecture notes), then you need to spell out
any and all of them that you use. So, for example, I awarded full marks to students
who wrote something like

An arborescence rooted at v is a directed graph T (V,E) in which all other
vertices are reachable from v and which becomes a tree when one ignores
the directedness of the edges.

This definition doesn’t use the term root, but instead explains that the vertex v must
have the properties of a root. On the other hand, it does use the terms reachable
and tree without further explanation, but that’s okay as both were defined in earlier
lectures.

(b) One can count spanning arborescences either with Tutte’s Matrix Tree Theorem (and
it’s good to explain that this is what you’re doing, though I didn’t deduct any marks for
correct answers that didn’t include such an explanation) or by drawing all associated
spregs and then counting those that are spanning arborescences: both approaches re-
ceived full marks when correct. The Matrix-Tree strategy was both more common and
more generally successful, though there were a lot of small mistakes in the evaluation
of det(L̂5).

(c) Here I wanted students to either use the result from Proposition 9.4, which is about
spregs that contain a single directed cycle, or to just use the approach from lecture to
enumerate the relevant spregs, noting that the presence of the cycle (v3, v4, v3) fixes the
predecessors of v3 and v4, so that the total number of spregs with distinguished vertex
v5 that contain the given cycle is degin(v1) × degin(v2) = 1 × 3 = 3. Most successful
answers used the latter approach, though some students just tried to draw the relevant
spregs and, often, found only two of the three.
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A3 Perhaps because we covered this topic in the very last lecture of the term, marks on this
question weren’t as high as they have been in recent years. The average was around 8.6/10
and 92 students got marks of either 9 or 10. The main ways people lost marks were by:

• in part (a), representing the problem with some graph other than the sort used in lecture
and not explaining how this non-standard graph worked;

• also in part (a), drawing an undirected graph, even though the problem asked explicitly
for a directed one (one mark deducted) or drawing a graph with no edge weights and
no other indication of the times required for the various tasks;

• failing to indicate the critical paths in part (b). There were two, S-E-G-H-I-Z and
S-E-F -C-D-I-Z, leading to a minimum time-to-completion of 29 days. A few students
found this result by exhaustive enumeration of all paths and received full credit.

• As all vertices except A and B lie on one of the critical paths, part (c) was pretty easy:
the only ways students lost marks here were by not answering the question (that is, not
giving earliest and latest starts for each vertex) or by making a numerical mistake.

B4 This was the most popular of the Part B problems: 115 out of 123 students tried it. Answers
varied wildly in quality, from 17 scripts with a score less than 10 on up to 14 scripts with
scores in excess of 20: the average was 14.9/25.

(a) In contrast to Part A, where most students gave correct definitions and got all the
associated marks, here there were more mistakes. Examples include:

• Definitions of k-colouring that didn’t make any mention of k. A typical mistaken
answer of this kind began

A k-colouring of a graph G(V,E) is a map ϕ : V → N . . .

Some better, but still incorrect answers began
A k-colouring of a graph G(V,E) is a bijection ϕ : V → {1, · · · , k} . . .,

but this is only true if χ(G) = |V |. Finally, I saw a few mistaken answers that
swapped the roles of {1, · · · , k} and V :

A k-colouring of a graph G(V,E) is a map ϕ : {1, · · · , k} → V . . .

• A claim, in the definition of a k-colouring, that “ϕ(u) ̸= ϕ(v) if and only if (u, v) ∈
E”. The right thing to say is that (u, v) ∈ E ⇒ ϕ(u) ̸= ϕ(v).

• In the definition of a tree, some students said only that |E| = |V | − 1, which is
true of trees, but not sufficient to characterise them: think of a graph with two
connected components, one isomorphic to K2 and the other to C3. This graph has
|E| = 4 = |V | − 1, but is not connected and so not a tree.

(b) Many, perhaps most, students gave a correct degree sequence,

(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4),

and drew a suitable example (there are lots), but failed to prove—or offered an incorrect
proof—that the degree sequence above, with 7 leaves, is the only possibility. Mistaken
proofs often included incorrect remarks about evenness and oddness of degrees or false
claims such as “a tree with 7 internal nodes must have 7 leaves”, for which a counterex-
ample is the path graph P9

(c) The most successful answers began with a proof of the following lemma:
If G1(V1, E1) and G2(V2, E2) are isomorphic and G1 is k-colourable, then so

is G2.
which establishes that χ(G2) ≤ χ(G1). I also saw a number of attempts at proofs
by induction—typically induction on χ(G)—but it was hard to see how to handle the
inductive step. That is, it’s hard to see how, given a pair of graphs with χ(Gj) = n0+1,
one can find a systematic way to modify it to produce a pair G′

j with χ(G′
j) = n0.
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(d) Almost everyone found the correct chromatic numbers here, though there were quite a
few claims of the form

By greedy colouring, χ(G) ≤ 2 . . .

that didn’t actually exhibit an explicit 2-colouring and so lost marks. There were also a
surprising number of claims that Q contains a subgraph isomorphic to K3, even though
this isn’t true. Also, quite a few students wrote “P is I3 . . .” or, sometimes “P is
I2 . . .”. Both these statements are false1. The first remark would be correct if it said
“P is isomorphic to I3” and so I tended to be generous about this mistake, but the
second version, involving I2, is just plain wrong and I deducted a mark.

(e) Here P and R are isomorphic and, for full credit, I wanted to see an explicit bijection
between their vertex sets. Quite a few students claimed, mistakenly, that all three of P ,
Q and R are isomorphic because they all have the same number of edges, vertices and
the same degree sequence.

B5 This was the least popular of the Part B problems, with only 62 attempts out of a possible
123. The average was 11/25.

(a) The definitions went well for the most part.
(b) I had hoped this would be easy as it is similar to problems that I suggested you study

and it did, indeed, go well. The main ways that students lost marks were as follows.
• Drawing and colouring a graph without explaining the construction. The issue is

that the question asks you to “Explain your approach thoroughly . . .” and so an
answer that does not include something like

One begins by constructing a graph whose vertices are the flats and which
has an edge between two vertices if and only if the corresponding flats are
within 150 meters of each other. The chromatic number of this graph is the
number of channels required for an interference-free wireless network.

is incomplete.
• Drawing the correct graph, but making a mistake in computing its chromatic num-

ber: it was 4.
• A handful of students drew a graph with flats as vertices, but edges between those

what were more than 150 meters apart. None of these students gave a good ex-
planation of why this was a useful construction, so I don’t know what they were
thinking, but this approach also yields the wrong numerical answer.

(c) This part asked you to prove or disprove three propositions, though many students
skipped the second and/or third of them.

• If, for some positive integer k0, the matrix Ak0 has strictly positive entries, then G
is strongly connected.
Most students who attempted this realised that the proposition is true (it follows
easily from material in the lecture titled Tropical Arithmetic and Shortest Paths),
but a few lost marks for confusion about the definitions of the terms path and
walk. There were also a few more profoundly confused answers involving adjacency
matrices for digraphs that included negative entries.

• If, for some positive integer k0, the matrix Ak0 has strictly positive entries, then Ak

has strictly positive entries for all k ≥ k0.
Many students skipped this: the statement is true.

• If G is strongly connected, then there exists a positive integer k0 > 0 such that Ak0

has strictly positive entries.
Many students skipped this too, though the statement is false and a suitable coun-
terexample, illustrated below,

1See the lecture notes: the vertex set of Id is the set of strings {0, 1}d and those labels don’t appear in the
diagram in the exam)
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is discussed in the feedback for 2017’s exam.
(d) It’s possible to get the right answer, k = 5, by thinking carefully about walks in the

graph, but it’s arguably easier to just compute powers of A with the repeated-squaring
algorithm. There were, however, a surprising number of elementary arithmetic mistakes
and, as in the previous part, I saw a number of incorrect adjacency matrices with
negative entries.

B6 This was the second most popular question in Part B, with 90/123 attempts. The average was
around 12.2/25, but this was pulled down by a number of students who seemed to have run
short of time, though 9 students got a score of 20/25 or better.

(a) The rather long list of definitions went well, though some students lost a mark or two
in one of the following ways.

• In the definition of girth, saying
If G contains more than one cycle . . .

instead of
If G contains one or more cycles . . .

• In the definition of homeomorphic, failing to say what a subdivision is or saying
something like

Replace an edge (a, b) with a walk . . .

instead of
Replace an edge (a, b) with a path . . .

Also, I found it odd that, as in previous years, many students wrote
A graph is planar if it contains a planar diagram.

Strictly speaking, this is wrong: graphs don’t “contain” diagrams, they “have” them,
but I was more concerned that people should give a complete definition, including one
for planar diagram, and so ignored this minor mistake.

(b) It seems to have helped students know that the graph in question could be produced by
removing 5 edges from K12. In the yes/no questions that made up this part, I awarded
one mark for a correct yes/no answer, then various numbers (between 2 and 4) for the
supporting arguments. The main issues were:
Eulerian? I saw several incorrect claims that if the sum of the degrees of a graph’s

vertices is even, then |E| must be even: K3 provides a counterexample. Others
claimed, incorrectly, that if the sum of degrees is odd (which is impossible: review
the Handshaking Lemma), then some vertex must have odd degree. On the positive
side, several students made interesting use of the Handshaking Lemma to establish
the existence of one or more vertices with degree 11.

Hamiltonian? Many students (correctly) invoked one of Dirac’s, Ore’s or the Bondy-
Chvátal Theorem, but a few just showed deg(v) ≥ n/2 ∀v ∈ V , which I regarded as
incomplete. A handful of students tried, confusingly, to use the converses of these
theorems, which are (a) false and (b) not relevant to the question.

girth? Most successful answers involved pointing out that K12 contains such a large
number of edge-disjoint three-cycles that one can’t possibly break them all by re-
moving just 5 edges. The best answers included specific lists of three-cycles or exact
formulae for the number of three cycles in K12 and an explicit upper bound on the
number that can be broken by removing 5 edges.

planar? Essentially all students who got this far answered correctly, demonstrating that
G can’t planar as it has far too many edges, though, as in the question whether G

6



is Hamiltonian, a few students became confused and tried to use the converse of
the relevant theorem. The issue is that although

G planar ⇒ m ≤ 3n− 6,

it is not true that
m ≤ 3n− 6 ⇒ G planar.

A counterexample to this second, erroneous statement appears in the left part of
Figure 10.11, which is part of the lecture titled Planar Graphs.

contains K5 homeomorphically? It turns out that G must contain subgraphs iso-
morphic (and so also homeomorphic) to both K5 and K3,3. Several students seemed
to think that Kuratowski’s Theorem says that a non-planar graph must contain an
induced subgraph homeomorphic (or sometimes isomorphic—these students were
confused) to K3,3 or K5 and so made a great deal of fuss about the degrees of the
vertices in G, but Kuratowski’s theorem concerns ordinary subgraphs, meaning that
one is free to delete unwanted edges from G when hunting obstacles to planarity.
A handful of students made an interesting, novel argument saying that if we con-
sider any one of K12’s’ many, many subgraphs isomorphic to K5, the process of
deleting edges to get to G can only break a few of of the subgraph’s edges and
that the endpoints of these broken edges would still, certainly, be connected by
paths running through the rest of the graph. This means that any subgraph that’s
isomorphic to K5 in K12 will have a companion that is homeomorphic to K5 in G.
This is true, and a great observation, so I awarded substantial partial credit, but for
full credit I wanted to see a quantitative argument to establish that the necessary
paths need never intersect each other.
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