Feedback About 2018’s Exam in
MATH20902: Discrete Mathematics
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Figure 1: Histograms of the raw exam results (left panel) and final marks (right panel). The
histogram of total marks (where “total” means exam plus coursework) has been shaded to indicate
degree classes. These plots include data for all 114 students who sat the exam.

General remarks

e The final marks summarised in the panel at right above have not been adjusted to take
account of Mitigating Circumstances nor have they been moderated (that is, scaled) to make
them more comparable to other exams in the School.

e Many people did very well on the exam: although there were no perfect papers, 27 students
had exam marks of 65 or better (out of 80). Here is a summary of the final marks, by degree
class.

Result: First 2(i) 2(ii)  Third Fail

Range: 70-100 6069 50-59 40-49 0-39
Number of students: 68 22 13 8 3
Fraction of students: 59.6% 19.3% 11.4% % 2.7%

o Just over a fifth of all students attempted all three of the part B problems. For these students
only the best two part B scores contributed to the total exam mark.

Part B problems attempted: B4 & B5 B4 & B6 B5 & B6  All
Number of students: 57 24 10 23

e These notes about individual problems easier to follow if you have a copy of the exam.



http://www.maths.manchester.ac.uk/~mrm/Teaching/DiscreteMaths/ExamsAndCworks/MATH20902_June18.pdf
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Figure 2: Histograms for the individual questions: note that the vertical scale varies from question
to question. Those for the required Part A questions (10 marks apiece) are plotted light blue, while
those
latter group, some of the very lowest marks come from students who attempted all three part B
questions and so these scores didn’t usually contribute to the total exam mark.

for the Part B questions (best two out of three, 25 marks apiece) are slightly darker. In the

Remarks about individual problems

A1 Almost all students got the 3 marks associated with the definitions, but the rest of the problem

proved somewhat harder than I'd hoped: although there were 7 perfect answers, the average
mark for this question was only around 5.6/10. The question asked you to prove two things:

o If there is a saturated hydrocarbon with formula C,,H,,, then n = 2m + 2.

o If m is a positive integer and n = 2m + 2, then there exists an example of a saturated
hydrocarbon with formula C,,,H,,.

The first of these is fairly easy to establish using the Handshaking Lemma and the observation
that a saturated hydrocarbon is—if viewed as a graph—a tree with hydrogen atoms as leaves
and carbon atoms as internal nodes with degree 4. If you used the Handshaking Lemma here
I wanted to see it mentioned by name explicitly, rather than just used as an intermediate
step in a wordless sequence of formulae.

The second thing is most easily proven by constructing a family of examples. One especially
simple family has the m carbon atoms arranged in a linear chain, like the vertices of a path
graph, with the 2m+1 hydrogens attached to the carbons as in the example at left in Figure E

Many students tried to make proofs by induction for one or both of the statements above.
Some of those for the second statement were successful, but most of those for the first
(saturated hydrocarbon = n = 2m + 1) were not, mainly because they assumed, without
supporting argument, that all saturated hydrocarbons can be built sequentially, by repeatedly
adding a single carbon to a smaller saturated hydrocarbon. This is true, but needs an
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Figure 3: Two saturated hydrocarbons: Problem A1 turns on the observation that such a molecule
is—when viewed as a graph—a tree.

inductive proof that starts with a saturated hydrocarbon having, say, ng + 1 carbons and
removes a carbon to get a smaller saturated hydrocarbon.

A few students found another way to approach the problem by using a result from the Problem
Sets that says that if one has a non-decreasing sequence of positive integers D = (dy,...,dn)
with the property that

N
j=1

then there exists a tree whose degree sequence is D.

Finally, a few students became muddled up because the problem involved the symbols n and
m for, respectively, the numbers of hydrogen and carbon atoms. Thus, although we have
often used n for the number of vertices in a graph and m for the number of edges, the graphs
associated with a hydrocarbon whose chemical formula is C,,H,, have |V| =n+m = 3m +2
vertices and |E| = (4m +n)/2 = 3m + 1 edges.

A2 Perhaps because similar questions have appeared on many recent exams, this proved an easy
question: the average was 8.4/10.

(a) Asin question Al, most students got most of the marks available for definitions. Those
who lost marks made two main kinds of mistakes.

e Some neglected to explain key words such as rooted or spanning.
e Some gave definitions that were too terse. So, for example, it was not enough to
say
A spanning arborescence in a directed graph G(V, F) is an arborescence that
includes all the vertices in V.
without explaining what an arborescence is. Similarly, it’s not enough to say
A directed graph T(V, E) is an arborescence if T contains a root and the
graph |T| that one obtains by ignoring the directedness of the edges is a
tree.
without saying what a root is. On the other hand, you wouldn’t need to define tree.

The principle here is that if a group of definitions appear in quick succession (those
for root, arborescence and spanning arborescence are Definitions 7.6-7.8 and all
appear one after the other in the printed lecture notes), then you need to spell out
any and all of them that you use. So, for example, I awarded full marks to students
who wrote something like
An arborescence rooted at v is a directed graph T(V, E) in which all other
vertices are reachable from v and which becomes a tree when one ignores
the directedness of the edges.



(b)

This definition doesn’t use the term root, but instead explains that the vertex v must
have the properties of a root. On the other hand, it does use the terms reachable
and tree without further explanation, but that’s okay as both were defined in earlier
lectures.

One can count spanning arborescences either with Tutte’s Matrix Tree Theorem (and
it’s good to explain that this is what you’re doing, though I didn’t deduct any marks
for correct answers that didn’t mention Tutte) or by drawing all associated spregs and
then counting those that contain no cycles: both strategies were acceptable and received
full marks when correct. The Matrix-Tree strategy was both more common and more
generally successful, though there were a lot of small mistakes in the construction of L,
mainly involving the entries L o and Ly 2, which should be 3 and -1, respectively, and
in the evaluation of det(Ls), which should be 4.

This part proved even easier than the previous part, with the best answers looking
something like

The total number of spregs with distinguished vertex v is given by
H degp(u),
uFv
so for vy in the the graph from the exam, there are
deg, (v1) x degp(vs) x degy,(vs) = 2x2x2 =8

spregs (see Figure H for sketches).
The most common mistakes in this part included:

e the surprisingly common claim
77
H degjp(u) = degyy,(v1) x degg,(vs) x degyp(vs) = 2X2x2 = 6
uFva

e drawing spregs where some vertex other than v had no predecessors;
» neglecting to sketch the spregs.

A3 As I'd hoped, most students found this question easy. The average was around 9.3/10 and 80
students got 10/10. The main ways people lost marks were by:

in part (a), representing the problem with some graph other than the sort used in lecture
and not explaining how this non-standard graph worked;

also in part (a), drawing an undirected graph, even though the problem asked explicitly
for a directed one (one mark deducted) or drawing a graph with no edge weights and
no other indication of the times required for the various tasks;

failing to indicate the critical paths in part (b). There were two, S-A-B-C-G-Z and
S-A-D-F-G-Z, leading to a minimum time-to-completion of 21 days. A few students
found this result by exhaustive enumeration of all paths and received full credit.

As all vertices except E lie on one of the critical paths, part (c) was pretty easy: the
only way students lost marks here was by not answering the question (that is, not giving
earliest and latest starts for each vertex).



Figure 4: The eight spregs with distinguished vertex vy present in the graph from question A2.
The four in the left column are spanning arborescences rooted at vy, while while those in the right
column contain cycles.



B4 This was the most popular of the Part B problems: 104 out of 114 students tried it. Answers
varied wildly in quality, from 16 scripts with a score less than 10 on up to 10 scripts with
scores in excess of 20/25: the average was 14.9/25.

(a)

In contrast to Part A, where most students gave correct definitions and got all the
associated marks, here there were more mistakes. Examples include:

 forgetting to mention that E # ) in a bipartite graph;

o a definition of k-colouring that claimed the associated mapping ¢ : V — {1,...,k}
is a bijection. This is possible—for example for an n-colouring of K,,—but it’s not
true in general.

e A claim, in the definition of a k-colouring, that “¢(u) # ¢(v) if and only if (u,v) €
E”. The right thing to say is that (u,v) € E = ¢(u) # ¢(v).

A substantial minority of students didn’t seem to understand what it takes to prove
an “if and only if” result. A complete answer to the question requires proofs of two
statements:

o If a graph G is bipartite, then x(G) = 2.
o If x(G) =2 then G is bipartite.
Many students only proved the first of these.

Many students skipped this, though I did see a few examples of a lovely proof by
contradiction based on the result form part (b). Suppose for contradiction a bipartite
graph G(V, E) contains a cycle of odd length and call the subgraph consisting of this
cycle C. On the one hand we know that x(C) = 3, because C is a cycle of odd length.
But on the we also know that because C' is a subgraph of G, x(C) < x(G) = 2.

Nearly everyone found a 2-colouring for H and so established x(H) < 2, then completed
the proof that x(H) = 2 by observing that H contains edges, so can’t have a 1-colouring,
which means y(H) > 2. One student claimed that any graph in which all the cycles
have even length must be bipartite, but while this is true, it’s nontrivial to prove and
so I didn’t award many marks for the bare assertion.

A surprising number of students wrote something like “u maps to v” to mean “the edge
(u,v) is present in the graph.” This was odd, but not exactly wrong and so I didn’t
deduct any marks for it.

Most students said, correctly, that H is not Hamiltonian, but fewer offered rigorous jus-
tifications. The best answers pointed out that H has 11 vertices and so any Hamiltonian
cycle would have length 11, an impossibility in a bipartite graph. Common mistakes
included:

e confusion between criteria for Hamiltonian cycles and Eulerian ones. These students
usually mentioned the presence of a vertex of odd degree, but that’s not relevant
here.

» Misapplication of Dirac and/or Ore’s Theorems. These results are of the general
form

If all the vertices in G have high degree, then G is Hamiltonian.

Some students tried to use these result “backwards”, claiming that as all the vertices
in H have low degree, (for example, deg(v) < |V|/2 for all v € V'), then H can’t
be Hamiltonian. But this is a mistake in logic: Dirac’s and Ore’s Theorems can
only be used to prove a graph 4s Hamiltonian, not to prove that it isn’t. After all,
the cycle graphs are all Hamiltonian—indeed, a cycle graph is nothing but one big
Hamiltonian cycle—yet all their vertices have degree 2.



B5 This was the second most popular of the Part B problems: 90 out of 114 students attempted
it and the average was 17.1/25.

(a) The definitions went well for the most part. Most of the (few) mistakes came from:

o defining a walk as a sequence of edges (ey,...,e;) without mentioning that these
edges need to join up in the sense that there should be corresponding sequence of
vertices (vo, ..., ve) such that e; = (vj_1,v;);

e mixing up the adjacency matrix and the graph Laplacian or the diagonal matrix D
in which D;; = deg(v;).

(b) T had hoped this would be easy, as it is similar to problems from Foundations of Pure
Maths, but a surprising number of students seem to have had trouble recalling what
an equivalence relation is and how to construct equivalence classes. Typical problems
included:

o forgetting to mention that “is strongly connected to” is reflexive by definition, in
that we always say that a vertex is strongly connected to itself;

o forgetting the equivalence class that consists of v4 on its own. The other equivalence
classes/strong components were {v1,v2,v3} and {vs, vg, v7}.

e Many students listed pairs of strongly connected vertices, but such pairs are not
strong components, which is what the question requested.

(¢) Most students did well here though a few lost a mark for constructing the transpose of
the adjacency matrix rather than A itself.

(d) Here again, people did well, though for full credit I wanted to see some discussion of
a® oo and a ® co.

(e) There was a small subtlety in this question in that the matrix W here has oo in the
diagonal elements, as opposed to the 0’s that appeared in the matrix in Lecture 14.
This means that, for the matrix in the exam, [W®¢];; gives the length of a shortest walk
of length ¢ from v; to v;. Many students side-stepped this issue by simply computing
W®* directly, sometimes using repeated squaring

B6 This was the least popular question in Part B, with only 57/114 attempts. The average was
only 12.2/25, but this was pulled down by a number of students who did part (a), but nothing
more. Of those who attempted the whole problem, 19 got a mark of 20 or better.

(a) The rather long list of definitions went well, though some students lost a mark or two
in one of the following ways:

o saying that an an Eulerian tour is a cycle or a closed path. While this is possible, it
isn’t always true, as is illustrated in the graph below. The closed trail specified by
the vertex sequence (s,w,z,z,y,w,u,s) is an Eulerian tour (traverses every edge
exactly once and starts and finishes at the same vertex), but it is not a cycle.

N X

u Y
e Some students neglected to mention planar diagrams in their definition of a planar
graph.
Also, I found it odd that many students wrote
A graph is planar if it contains a planar diagram.

Strictly speaking, this is wrong: graphs don’t “contain” diagrams, they “have” them,
but I was more concerned that people should give a complete definition, including one
for planar diagram, and so ignored this minor mistake.



(b)
()

Students did surprisingly poorly on this problem, given that it was among those from
the Problem Sets that I suggested you study.

I worried that, despite my warning in the question, time-pressured students would an-
swer this part of the question for T4, which was pictured in the exam, rather than Tg,
which is what the question was about. Happily this didn’t happen very often. The main
issues were as follows:

Eulerian? Most people observed that all the vertices in Tg have even degree, but
a correct answer also needed to say that Tg is connected to establish that it is
Eulerian.

Hamiltonian? Many students (correctly) invoked one of Dirac’s, Ore’s or the Bondy-
Chvétal Theorem, but a few forgot to mention |V| = n = 15, an important ingre-
dient in all these arguments. A handful of students tried to construct an explicit
Hamiltonian tour, but as such a tour has length 16, this was both hard to do and
hard to check.

girth? The simplest way to do this was to give an example of a cycle of length 3 and
then say that in an undirected graph, all cycles have length 3 or more. A few
students mentioned, correctly, that T3 is a subgraph of Tg and I accepted this.

planar? Essentially all students who got this far answered correctly, demonstrating
that T can’t planar as it has far too many edges.

contains K57 A few people tried to use Kuratowski’s theorem here, but it’s not helpful
as it involves subgraphs homeomorphic to K5, while the question concerns subgraphs
isomorphic to K. In fact Tg contains six subgraphs isomorphic to K5 and the vertex
set of any one of them makes it clear what the others must be like. If we take the
underlying six-element set to be {a,b,c,d, e, f} and write its two-element subsets
as pairs of letters then the vertices

{ab,ac,ad, ae,af}

are all connected to each other (all share an a) and so clearly induce a subgraph
isomorphic to K.



