
Feedback About 2020’s Coursework in
MATH20902: Discrete Mathematics

I made the notes below while marking the coursework. I also added comments to individual papers
and would be happy to discuss these. The marked work is available through Blackboard.
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Figure 1: Histograms for the individual questions and for the total score (right). The histograms
above include marks for 118 students.

Overall Remarks

• Generally speaking, people did well: the average for the whole assignment was around 14.3/20
or, approximately 71.5%.

• I saw a lot of good arguments and examples while marking these scripts. There were, however,
some odd and surprisingly common misconceptions: nothing in the definition of an interval
graph excludes graphs with multiple connected components.

• Quite a few people seem to have looked at other sources and to have documented this prop-
erly: I saw bibliographic references to books, articles and sets of lecture notes from other
universities. Where ideas from outside the course appeared without appropriate referencing,
I deducted a mark.

• I marked the written component papers with an eye to good mathematical style (see the
question-by-question notes below for details). To get full marks you needed to make an
argument that was technically correct, rigorous, clear and concise.

Remarks about individual problems

(1) (Constructing interval graphs [3 marks]).
I hoped this would be an easy question and it seems to have been: all 118 students answered it
and the average was just under 2.1 marks, or around 70%. To get all the marks here you needed
to provide an explicit construction for the relevant intervals. For example, for Kn one might
use Ij = (−j, j). Many students lost marks by assuming that the intervals were closed, so that,
for example, {(0, 1), (1, 2), (2, 3)} would be a suitable set of intervals for P3, but the assignment
specifically said to use open intervals. Others offered collections that included multiple copies of
the same interval, but the definition of intervals graphs on the first page of the assignment makes
it clear that the intervals should be distinct.



A substantial minority of students constructed collections of intervals that intersected as they
should, but didn’t have enough members. Typical mistakes of this kind included:

• a set of only n− 1 intervals for Pn;

• a set of k intervals for the tree in part (c). The graph with k leaves should have k + 1
vertices/intervals.

A small minority of students wrote down something like:

Choose {I1, I2, . . . , In | Ij ∩ Ik 6= ∅ for 1 ≤ j ≤ k ≤ n}

for part (a), which is just a restatement of the definition of Kn in the language of interval graphs.
But this isn’t sufficient, as one needs to establish that such a collection actually exists and the
easiest way to do that is to write down an explicit expression for a family of intervals Ij that have
the required intersection properties. If you lost marks here and still don’t understand why, ask
yourself:

• how the correctness of your answer depends on properties of intervals;

• why your approach wouldn’t also work as an explanation of how to choose intervals whose
corresponding interval graph is isomorphic to C4.

(2) (Two “Benzer problems” [5 marks]).
Everyone answered this fairly easy question and many got full marks: the average was around 4.4,
or just over 88%. To get all the marks here you had to:

• draw the graphs associated with the matrices A1 and A2;

• determine whether these graphs could be represented by interval graphs;

• provide either a suitable collection of intervals, arranged in lexicographic order or an expla-
nation of why no such collection exists. Thus the answer for A1 needed to include something
like

I6 = (0, 1)

I3 = (0.5, 1.5)

I8 = (1, 2)

I1 = (3, 4)

I7 = (3.5, 4.5)

I2 = (5, 6)

I5 = (5.5, 6.5)

I4 = (7, 8)

where the intervals are labelled to match the rows and columns of the matrix in the problem,
but are arranged in lexicographic order.

When explaining why the matrix in part (b) doesn’t give rise to an interval graph, many people
wrote something like “G contains a cycle of length 4 as a subgraph”, but this isn’t really enough:
one needs to say that this cycle is an induced subgraph.



(3) (Berge’s mystery [6 marks]).
Everyone answered this too and the average was around 4.2 out of 6, or just ovunderer 70%. The
idea here is that if the women are telling the truth, then we ought to be able to construct an
interval graph whose vertices are labelled by the wives’ names (or first initials) and whose edges
connect women who met each other. We expect this to be an interval graph, with the intervals
being the periods during which a given wife was at the Duke’s castle.

Many students didn’t describe the construction at all (which is poor mathematical style and
cost marks) and those who did ranged from the uninformative

· · · the graph of this is:

written just above a drawing to the much better

We can convert the problem into an integral graph one where the intervals are the
periods the wives spent visiting · · · .

The graph based on the women’s testimony is provably not an interval graph and so at least
one woman is lying. At least two lines of reasoning suggest Alice is the culprit:

• the graph contains three induced subgraphs that are isomorphic to C4 and her vertex appears
in all of them;

• if you delete Alice’s vertex, the graph that remains is an interval graph and hers is the only
vertex with this property. Many students established only the weaker result that Alice’s
vertex is unique in that deleting it leaves a graph that has a perfect elimination scheme, but
for full credit I wanted to see a set of intervals.

Quite a few students solved the rather harder problem of finding the minimal number of visits
that Alice could have made: it’s three.

(4) (Perfect elimination scheme =⇒ interval graph? [6 marks]).
This was the hardest problem: 3 students skipped it, though the average for those who did answer
was around 3.7 out of 6, or 62%. The converse of proposition 2 is false: it’s possible for a graph to
have a perfect elimination scheme, yet not be an interval graph. For full marks I wanted to see a
correct yes/no answer, a counterexample and an explanation for why the example couldn’t be an
interval graph.

A few students gave very good answers based on wider reading: a key idea here is that of a
chordal graph. A graph is chordal if it does not contain any induced subgraphs isomorphic to
Cn with n ≥ 4. Equivalently, a graphG(V,E) is chordal if every cycle appearing in G is either
isomorphic to C3 or has a chord, an edge connecting two vertices that aren’t adjacent in the cycle.
This definition allows one to state the following proposition, which is arguably the closest true
statement to the converse of our Proposition 2:

Proposition. If G(V,E) has a perfect elimination scheme, then it is chordal.

We know from the lemma in the assignment that interval graphs are chordal, so the issue in this
question is whether there are any chordal graphs that aren’t interval graphs. It turns out that there
are, but there aren’t so many. An early characterisation of interval graphs due to Lekkerkerker
and Boland1 allowed them to prove:

Theorem (Lekkerkerker and Boland (1962)). A graph G(V,E) is an interval graph if and only if
it does not contain an induced subgraph isomorphic to one of those2 in Figure 2.

This set of forbidden subgraphs includes many that have a perfect elimination scheme and so
provide the sort of counterexample we sought. My solution (see below) is based on R2 and many
correct student answers involved the same graph, though B1 and L1 were also pretty common.

1C. Lekkerkerker and J. Boland (1962), Representation of a finite graph by a set of intervals on the real line,
Fundamenta Mathematicae, 51:45–64.

2The figure is adapted from one in W. T. Trotter (1992), Combinatorics and partially ordered sets : dimension
theory, Johns Hopkins University Press, Baltimore.
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Figure 2: Forbidden induced subgraphs for interval graphs. In addition to the two single graphs
B1 and B2 there are three infinite families: Cn for n ≥ 4; Rn with n ≥ 2, which consists of a
triangulated cycle of length (n + 1) ≥ 3 as well as three vertices of degree one, and Ln, which
consists of a graph isomorphic to a complete bipartite graph K2,n with n ≥ 1 (shown in red and
white) as well as three other (yellow) vertices.

Finally, I include a model answer, to give an idea of the level of detail and rigour required.

Proof. The converse of Proposition 2 is not true, as is illustrated by the counterexample in Figure 3.
Call this graph G(V,E) and note that {a, b, d, c, e, f} is a perfect elimination scheme for G.

Suppose for contradiction that there is some collection of intervals Ia = (la, ra), . . . If = (lf , rf )
whose interval graph is G. As the subgraph induced by {a, b, c, d} is isomorphic to the path graph
P4, it must be true that either

lb < ra < lc < rb < ld < rc or lc < rd < lb < rc < la < rb, (1)

Both possibilities are illustrated in Figure 4.
Now consider Ie. The presence of the edges (b, e) and (c, e) imply that Ib∩Ie 6= ∅ and Ic∩Ie 6= ∅,

but the absence of the edges (a, e) and (d, e) requires Ia ∩ Ie = Id ∩ Ie = ∅. These observations,
along with (1), imply that either

lb < ra < le < re < ld < rc or lc < rd < le < re < la < rb. (2)

Either way, we can conclude that
Ie ⊂ Ib ∪ Ic. (3)

Now, the presence of the edge (e, f) means that Ie ∩ If 6= ∅, but this, along with (3), implies
that

Ib ∩ If 6= ∅ or Ic ∩ If 6= ∅

which would in turn imply the existence of at least one edge that is not present in the graph. Thus
no collection of intervals can have G as its interval graph, even though G has a perfect elimination
scheme.
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Figure 3: A counterexample to the claim that all graphs that have a perfect elimination scheme are
interval graphs.

Figure 4: Arrangements of intervals consistent with the observation that the vertices {a, b, c, d}
induce a subgraph isomorphic to P4. The intervals Ia and Id may also be proper subsets of Ib and
Ic, respectively, but this does not affect the inequalities in Eqns. (1) or (2).


