
Feedback About 2019’s Coursework in
MATH20902: Discrete Mathematics

I made the notes below while marking the coursework. I also made remarks on individual papers
and would be happy to discuss these. The marked work is available at the Reception desk near
the entrance to the Alan Turing Building.
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Figure 1: Histograms for the individual questions and for the total score (right). The histograms
above include marks for 121 students for the online component (CW1) and 120 for the written
component (CW2 and CW3).

Overall Remarks
• Generally speaking, people did well: the average for the whole assignment was around 16.6/20

or, approximately 83%.

• I marked the written component papers with an eye to good mathematical style (see the
question-by-question notes below for details). To get full marks you needed to make an
argument that was technically correct, rigorous, clear and concise.

Remarks about individual problems
(1) (Computing P (G, k): 10 marks).
As I’d hoped, almost everyone got the full 10 marks here, and most students managed to do so in

fewer than 5 attempts:

Number of Number of students
attempts making that many attempts
1 41
2 42
3 22
4 11
5 5

Figure 2 shows how the number of attempts made per hour varied across the two-week period during
which the online component of the coursework was available. Most of the attempts happened in
the evening, except for the last day, when people seem to have worked through the night from
Thurs. 4 to Fri. 5 April.
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Figure 2: Number of attempts per hour, over the two-week period when the coursework was available:
tick marks appear just after midnight for the named day.

(2) (Chromatic polynomials of trees: 5 marks).
I hoped that people would have done very well on the online component of the coursework, so I
marked the proofs in the written section rather strictly.

• Most successful answers were proofs by induction, typically on the number of vertices n = |V |.
Oddly, quite a few students felt the need to handle both the n = 1 and n = 2 cases as Base
Cases, even though n = 1 is sufficient: the graph with |V | = 1 is certainly connected and
acyclic, so it is the simplest tree.

• Many students handled the inductive step by removing a leaf vertex, which is a fine strategy:
my model answer does the same. But not everyone explained why a tree must have at least
one leaf (one way to prove this is to invoke a lemma from the lecture on Trees and Forests)
and, if this explanation was missing, I deducted a mark.

• Quite a few students offered a semi-algorithmic proof that constructed the colouring one
vertex at a time. Most of these proofs were insufficiently detailled to get full marks, lacking
one or more of the following ingredients:

– a concrete procedure to choose the next vertex to be coloured;
– an argument to explain why every vertex would be coloured (this follows from the

connectedness of the tree, but needs to be stated);
– an argument to explain why the construction can never encounter a vertex with two or

more previously-coloured neighbours. This last point follows from the absence of cycles,
but needed to be stated explicitly.

Finally, a small minority of students offered incorrect inductive proofs based on the idea of
“building up” from a graph covered by the inductive hypothesis to a graph with one more
vertex. This issue is discussed in Section 6.2.1 of the lecture notes and, for example, in the
Feedback for 2017’s coursework, which says:

But the problem mentioned in the previous paragraph …appears to be an example
of a common conceptual mistake about how proofs by induction in graphs work:
one doesn’t “build up” from graphs that satisfy the inductive hypothesis, but rather
starts with a graph that (a) satisfies the hypotheses of the desired theorem and
(b) is one step bigger than those covered by the inductive hypothesis. One then
looks for a way to “cut down” the new graph in some way that makes the inductive
hypothesis applicable.



(3) (Multiple connected components: 5 marks).
The result in this question can seem so easy—once you understand it—that it’s hard to see what
there is to prove. And yet in practice I don’t think it is that simple. When I make similar arguments
in lecture, for example when counting spregs in the lecture about the proof of Tutte’s Matrix-Tree
theorem, students don’t seem to find them obvious at all: that’s why I included the problem in
the coursework. There are two key ideas:

• Given a graph G(V,E) with r connected components, G1(V1, E) . . . Gr(Vr, Er), there is a
natural bijection between r-tuples of subgraph colourings

(ϕ1, . . . , ϕr),

where ϕj : Vj → {1, . . . , k} is a k-colouring of Gj .

• The product
∏r

j=1 P (Gj , k) counts the number of such r-tuples.

A few students offered proofs that contained these ideas (or something equivalent), but most just
said imprecise things such as

• “The chromatic polynomial is …quite simply the product of the numbers of colours each
vertex can take.” This just about makes sense when, as in the proof of Lemma 1 in the
coursework, one is constructing the colouring one vertex at a time, but it is not true in
general.

• “The connected components are disjoint” They aren’t. Sets can be disjoint, and the vertex
sets Vj are pairwise disjoint, but graphs aren’t sets and so cannot, without further explana-
tion, be said to be disjoint.

• “The colourings of the components are independent” It’s not clear, without further defini-
tion, what “independent” means here. The sense one needs is something like “colourings
of subgraphs can be combined arbitrarily when constructing colourings of G” and remarks
along these lines received more partial credit.

Quite a few students offered an interesting proof by induction whose inductive step involved
adding an edge between two components to create a graph with one less connected component.
Many of these proofs were good and got substantial partial credit, but almost all of them missed
a subtlety that meant that argument failed to work for the step from r = 1 to r = 2. This isn’t a
disaster—one just has to prove a slightly more elaborate base case—but few students who chose
this approach seem to have realised that.

Finally, here is one proof of the result that does include the level of detail I was looking for:

Model answer:
One can prove this lemma by induction on r, the number of connected components. Clearly the
result is true for r = 1. Now suppose that it is also true for all values of r up to and including some
r0 ≥ 1 and consider a graph G(V,E) with r0+1 components, say, G1(V1, E1), . . . , Gr0+1(Vr0+1, Er0+1).

Divide G into two subgraphs: one—call it G′(V ′, E′)—that consists of the first r0 components
and another that consists of Gr0+1(Vr0+1, Er0+1). Now suppose we have one k-colouring each for
these two subgraphs. That is, we have a k-colouring ϕ1 : V ′ 7→ {1, . . . , k} for G′ and a second k-
colouring, ϕ2 : Vr0+1 7→ {1, . . . , k}, for Gr0+1. Then we can define a k-colouring ϕ : V 7→ {1, . . . , k}
for the whole graph G by

ϕ(v) =

{
ϕ1(v) if v ∈ V ′

ϕ2(v) if v ∈ Vr0+1

And as there are no edges between G′ and Gr0+1, we can use this approach to combine arbitrary
pairs of subgraph colourings to yield new, distinct colourings of G.

Furthermore, given any k-colouring of G, we can generate a pair of colourings ϕ1, ϕ2 like the
ones described above by restricting the domain of ϕ to, respectively, V ′ and Vr0+1. Thus there is
a bijection between k-colourings of G and pairs of k-colourings (ϕ1, ϕ2) on the two subgraphs.



The number of such pairs (ϕ1, ϕ2)—and so also the number of k-colourings of G—is

P (G, k) = P (G′, k)P (Gr0+1, k)

=

 r0∏
j=1

P (Gj , k)

P (Gr0+1, k)

=

r0+1∏
j=1

P (Gj , k)

In passing for the first to the second line, I have used the fact that G′ is a graph with r0 connected
components and hence covered by the inductive hypothesis.


