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Overview

Today we’ll continue our discussion of continuous
probability

Continuous distributions: probability densities

Expectations: integrating to get µ and σ

Famous distributions: the normal (again) and the
exponential distribution

Why is the normal famous? averaging and the Central
Limit Theorem.
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The life table

Number of men remaining alive at intervals of ten years

Age in Number Age in Number
years, x surviving, lx years, x surviving, lx

0 1000 60 758
10 959 70 524
20 952 80 211
30 938 90 22
40 920 100 0
50 876

From English Life Table No. 11, Males
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Prob. of death by decade

Probability of dying in each decade

Age at death x Prob. Age at death x Prob.
0 ≤ x < 10 0.041 50 ≤ x < 60 0.118

10 ≤ x < 20 0.007 60 ≤ x < 70 0.234
20 ≤ x < 30 0.014 70 ≤ x < 80 0.313
30 ≤ x < 40 0.018 80 ≤ x < 90 0.189
40 ≤ x < 50 0.044 90 ≤ x < 100 0.022
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Relative frequency histo

Relative frequency histogram for the distribution of
age-at-death by decade
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Review: expectation

Q: Based on the information in the previous two slides,
estimate the mean lifetime of british males.

A: There’s not enough detail here to give a very precise
answer, but if we assume that the average bloke lives 5
years into the decade of his death, then the expected
lifespan at birth is:

P ( 0 ≤ x < 10 ) × 5 +

P ( 10 ≤ x < 20 ) × 15 +

...
P ( 90 ≤ x < 100 ) × 95 = 66.6
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A probability density function

Scale each probability by the width of the interval (that is,
10 years) to get probability of death per year. This is an
example of a probability density function, or pdf for short.
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Remarks about densities

The previous slide showed a sort of relative-frequency
histogram, but arranged so that

height of bar above jth decade is

(1/10) × P ( death in jth decade )

width of bar above the jth decade is ten, so area of the
bar is P ( death in jth decade );

total area covered by bars is one;

more detailed data could produce histogram with
narrower bins, smoother density
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Densities: probabilities are integrals

Think of the density as a (piecewise-constant) function
f(x). Then, for example,

P ( death in 2nd decade ) =

∫ 20

10

f(x) dx

We calculated the expected lifespan-from-birth using a
sum, but we could also have thought of it as an integral

E(x) =

∫ 100

0

xf(x) dx

≈ 66.6
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Using densities in general (review)

The probability that a random variable x with density f(x) falls in a range
a ≤ x ≤ b is:

∫

b

a

f(x) dx

Expectations are computed by doing integrals rather than sums

µ = E(x) =

∫

∞

−∞

x f(x) dx

and

σ2 = E(x2) − (E(x))2

=

[∫

∞

−∞

x2 f(x) dx

]

− µ2

≈ 365.6 for the lifetime distrib.

More Continuous Probability – p.10/21



Cumulative densities

If f(X) is a pdf then it has a useful companion, the
Cumulative Density Function (a.k.a the cdf) F (X) given by

F (X) =

∫ X

−∞

f(x) dx.

In words

F (x) = P ( random variable with density f(X) is ≤ x).
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Example: the exponential
distribution

Consider events that occur randomly, but at a steady
average rate: big floods in York, spontaneous dimerization
of visual pigments or failure of electrical components. The
intervals between such events often follow an exponential
distribution with density function

f(T ) = re−rT

where r is the steady rate and we consider only positive

inter-event intervals: 0 ≤ T < ∞.
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Buses on the Oxford road

During busy times buses arrive about every three minutes,

so if we measure t in minutes the rate r of the exponential

distribution is r = (1/3).

Q: What is the probability of having to wait 6 or more minutes

for a bus?
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Integrate your wait away

A: Integrate over the shaded area:
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Details

P (T > 6) =

∫ ∞

6

f(t) dt

=

∫ ∞

6

(1/3)e−t/3 dt

=
[

−e−t/3
]∞

6

= (−e−∞) − (−e2)

= 0 + e2 ≈ 0.135
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Cdf for the exponential distribution
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The cdf for the inter-bus in-
terval distribution

F (T ) =

∫ T

−∞

f(t) dt

=

∫ T

0

(

e−t/3

3

)

dt

= 1 − e−t/3
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Simulation: mean ages-at-death

The figure below shows histograms of results from
simulated experiments in which I averaged the lifetimes of
variously-sized samples of english men:
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The famous normal (again)

The blue curves plotted on top the histograms were
examples of the normal distribution, a continuous
probability distribution given by the formula

f(y) =
exp [−(y − µ)2/(2σ2)]

√
2πσ2

The normals used to approximate the average-life his-

tograms had the same mean µ as the age data, but a vari-

ance σ2 that depends on N in a way we’ll consider in today’s

final slide.
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Averages and the Normal

Why does the normal arise so often? Because it is the
“natural” distribution of averaged quantities. Think about an
experiment in which you draw N random variables from
(almost) any distribution f(x) and average them: this
defines a new random variable

y =
x1 + x2 + · · · + xN

N
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The Central Limit Theorem

The averages Y will be approximately normally distributed
and will have the same mean as f(x) does, µy = µx, but
will have a variance that decreases as N increases:

σ2
y =

σ2
x

N
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Check: means of samples

The mean of a large sample:

a) is always greater than the median;

b) is calculated with the formula m = (1/N)
∑N

j=1 xj;

c) is from an approximately Normal distribution;

d) increases as the sample size increases;

e) is always greater than the standard deviation.

Answer:

Only items (b) and (c) are true.
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