

Distributions, Histograms and Densities: Continuous Probability

[Mark](http://www.ma.umist.ac.uk/mrm/) Muldoon

Departments of [Mathem](http://www2.umist.ac.uk/mathematics/)atics and

[Optometry](http://www2.umist.ac.uk/optometry/welcome.html) & Neuroscience

UMIST

[http://www](http://www.ma.umist.ac.uk/mrm/Teaching/2P1/).[ma](http://www.ma.umist.ac.uk/mrm/Teaching/2P1/).[umist](http://www.ma.umist.ac.uk/mrm/Teaching/2P1/).[ac](http://www.ma.umist.ac.uk/mrm/Teaching/2P1/).[uk/mrm/Teaching/2](http://www.ma.umist.ac.uk/mrm/Teaching/2P1/)P1/

Today we'll continue our discussion of probability with ^a definition salad that introduces various names and notions including

- **random variable:** ^a notion for thinking about experiments ෧ whose outcome is uncertain;
- **Discrete distributions:** especially the binomial ෧ distribution;
- **Expected values:** long-term averages of random variables;
- **Continuous distributions:** a sort of generalization of the ෧ histogram. Main example is the normal distribution.

Random variables

A **random variable** is ^a quantity that can take on more than one value, each with ^a given probability. Examples include:

- a) the outcome of tossing ^a coin (possibilities are Heads and Tails);
- b) the number of heads we'd get in 10 tosses of ^a fair coin (possible values range between zero and ten);
- c) the number of glaucoma sufferers in Whalley Range;
- d) the amount of heat energy, in say, Watts, put out by people in this room.

Items (a)-(c) are examples of *discrete* random variables they assign probabilities to ^a finite list of possibilities—while item (d) is a *continuous* random variable.

Probability distributions

A **probability distribution** is function that gives the probability of each possible value of ^a random variable

- One toss of a fair coin $P($ Heads $)=0.5=P($ Tails $).$ ෧
- Number of heads in two tosses of a fair coin: ෧

 $P(0) = 0.25$ $P(1) = 0.5$ $P(2) = 0.25$

Number of sixes in three rolls of an ordinary die ෧ Number of sixes $\begin{matrix} 0 & 1 & 2 & 3 \end{matrix}$ Exact probability $\frac{125}{216}$ $\frac{75}{216}$ $\frac{15}{216}$ $\frac{1}{216}$

Two parents carry the same recessive gene which each transmits to their children with probability 0.5. Suppose ^a child will develop clinical disease if it inherits the gene from both parents and will be an asymptomatic carrier if it inherits only one copy. Complete the following table . . .

Exercise continued

. . . then use your table to decide which of the following are true:

- a) the probability that the couple's next child will develop clinical disease is 0.25;
- b) the probability that two successive children will develop clinical disease is $0.25 \times 0.25;$
- c) the probability that their next child will be ^a carrier is 0.5;
- d) the probability of ^a child being ^a carrier or having disease is 0.75;
- e) if their first child doesn't have disease the probability that the second won't is $(0.75)^2.$

The answers are easy to obtain if the table is right:

Only statement (e) is false—all the others are true.

Larger families

Suppose the couple from the previous exercise had ^a family of three children, what is the distribution of the number of diseased kids they'd have?

Larger families

Suppose the couple from the previous exercise had ^a family of three children, what is the distribution of the number of diseased kids they'd have?

Very large families

. . . or even 12 kids ?!?

$$
P(k \text{ discussed kids}) =
$$
\n
$$
\left(\frac{1}{4}\right)^k \times \left(\frac{3}{4}\right)^{(12-k)}
$$
\n
$$
\times \frac{12!}{k!(12-k)!}
$$

Bernoulli trials and the Binomial Distribution

Generally speaking, if one is interested in N independent trials (births, coin tosses, samples from the population at large) of some experiment that has probability p of "success" (getting ^a healthy child, getting Heads, finding undiagnosed glaucoma), the probability of finding k successes is

$$
P(k \text{ successes}) = p^{k}(1-p)^{N-k} \frac{N!}{k!(N-k)!}
$$

Factors in the binomial distribution

 $P(k$ successes $) = p^k$

• probability of k "successes";

Factors in the binomial distribution

$$
P(\ k \text{ successes }) = p^k (1-p)^{N-k}
$$

- probability of k "successes"; 6
- **•** probability of $(N k)$ "failures";

Factors in the binomial distribution

$$
\overbrace{\hspace{2.5em}}
$$

$$
P(k \text{ successes}) = p^{k}(1-p)^{N-k} \frac{N!}{k!(N-k)!}
$$

- probability of k "successes"; ෧
- probability of $(N k)$ "failures"; 6
- combinatorial factor: counts ways to arrange k ෧ successes within string of N trials:

$$
N! = 1 \times 2 \times \cdots \times N
$$

$$
\approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}
$$

The Poisson distribution

Suppose events happen randomly in time, but at ^a steady rate r (for example, 5 events per minute, when averaged over many hours). Then the probability of seeing exactly k events in a time T

$$
P(\ k \text{ events }) = \frac{(rT)^k}{k!} e^{-rT}.
$$

If events happen randomly and independently in space (rather than time), then r is the rate per unit area or volume and the Poisson distribution gives the probability of k events in area or volume $T.$

The *expected value* of a random variable X , denoted $E(X)$, is just the mean of X and one calculates it with a sum like this:

$$
E(X) = \sum_{\text{All possible values } x_j} P(x_j) \times x_j
$$

More expectation

$$
\mathcal{L} = \mathcal{
$$

Example:

Find the mean score expected in ^a single roll of ^a fair die.

Answer:

The possible results are 1, 2, . . . 6 and each is equally likely so the expectation is

$$
\left(\frac{1}{6}\right) \times 1 + \left(\frac{1}{6}\right) \times 2 + \dots + \left(\frac{1}{6}\right) \times 6
$$

which comes to $(1+2+\cdots+6)/6$ or $(21/6)=3.5.5$

Mean and variance

Earlier in the term we saw how to calculate the mean and variance of ^a sample of data: they were descriptive statistics. It is also possible to define the mean and variance of a *distribution*: they are

mean:
$$
\mu = E(X)
$$

variance: $\sigma^2 = E((X - \mu)^2)$.

An important statistical question is:

How well does a mean from ^a sample approximate the mean of the underlying distribution?

Example: the binomial distributions

Consider a binomial experiment of N trials with probability of success $p\colon$ and take the random variable $X=$ number of successes. Then

$$
E(X) = pN
$$

$$
\sigma^2 = p(1-p)N
$$

As you will see in the homework, this bears directly on the problem of estimating frequencies.

Tossing many coins

The previous slide showed ^a group of relative-frequency histograms for experiments on increasingly large numbers of fair coins. On top of these were curves that made better and better approximations to the histograms:

- height of bar above j is probability of getting j heads;
- width of bar above j is one, so area of bar above j is ෛ $P(j \text{ heads})$;
- total area covered by bars is one; G
- total area beneath curve is one.

Passing to continuity

These observations suggest ^a way to make distributions for continuous random variables Y : use a function $f(y)$ with the properties

 $f(y) \geq 0$ for all values of y;

6

$$
\int_{-\infty}^{\infty} f(y) \, dy = 1
$$

Functions with these properties are called *probability den*sity functions or pdf's for short.

Using continuous densities

౷ The probability that Y falls in a range $a\leq Y\leq b$ is:

$$
\int_a^b f(y) \, dy
$$

෧ Expectations are computed by doing integrals rather than sums

$$
\mu = E(Y) = \int_{-\infty}^{\infty} y f(y) \, dy
$$

and

$$
\sigma^2 = E((Y - \mu)^2) = \int_{-\infty}^{\infty} (y - \mu)^2 f(y) dy
$$

The famous normal

The curves plotted on top the histograms were examples of the *normal distribution*, a continuous probability distribution given by the formula

$$
f(y) = \frac{\exp[-(y - \mu)^2/(2\sigma^2)]}{\sqrt{2\pi\sigma^2}}
$$

Normals used to approximate the binmoial histograms had mean $\mu=N/2$ and variance $\sigma^2=N/4$ — the same as the binomial distributions.

The standard normal

The curves a few slides back had the same mean and variance as the binomial distribs they were approximating, but the one below is the *standard normal* with $\mu=0$ and $\sigma=1$.

> -3 -2 -1 0 1 2 3 $\rm 0.1$ 0.2 0.3 0.4 *z Re l at i* ζ *e Fre que ncy Standard normal distrib. (*µ ⁼ 0, ^σ ⁼ 1)

Properties of the normal

- a) It is "bell-shaped" and symmetric about its mean.
- b) Its mean, median and mode are all the same—zero for the standard normal.
- c) It is determined by two parameters, its mean μ and its standard deviation $\sigma.$ The latter determines the width of the bell curve in all the following senses:
	- i) geometrically, the full width of the bell-shaped curve as measured at half its maximum height (FWHM) is $\sigma\sqrt{8\log 2}\approx 2.3\sigma.$
	- ii) \approx 68% of the values lie within a band $\pm\sigma$ around the mean.
	- iii) \approx 95% of the values lie within a band $\pm 2\sigma$ around the mean.
	- iv) \approx 99.7% of the values lie within a band $\pm 3\sigma$ around the mean; the distribution is thus approximately 6σ wide.