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Overview

Today we’ll continue our discussion of probability with a
definition salad that introduces various names and notions
including

random variable: a notion for thinking about experiments
whose outcome is uncertain;

Discrete distributions: especially the binomial
distribution;

Expected values: long-term averages of random
variables;

Continuous distributions: a sort of generalization of the
histogram. Main example is the normal distribution.
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Random variables

A random variable is a quantity that can take on more than
one value, each with a given probability. Examples include:

a) the outcome of tossing a coin (possibilities are Heads and Tails);

b) the number of heads we’d get in 10 tosses of a fair coin (possible values range
between zero and ten);

c) the number of glaucoma sufferers in Whalley Range;

d) the amount of heat energy, in say, Watts, put out by people in this room.

Items (a)-(c) are examples of discrete random variables—

they assign probabilities to a finite list of possibilities—while

item (d) is a continuous random variable.
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Probability distributions

A probability distribution is function that gives the probability
of each possible value of a random variable

One toss of a fair coin P ( Heads ) = 0.5 = P ( Tails ).

Number of heads in two tosses of a fair coin:

P (0) = 0.25 P (1) = 0.5 P (2) = 0.25

Number of sixes in three rolls of an ordinary die
Number of sixes 0 1 2 3
Exact probability 125

216
75
216

15
216

1
216
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Exercise

Two parents carry the same recessive gene which each
transmits to their children with probability 0.5. Suppose a
child will develop clinical disease if it inherits the gene from
both parents and will be an asymptomatic carrier if it
inherits only one copy. Complete the following table . . .

Status Fortunate Carrier Diseased
Copies of Gene 0 1 2
Probability
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Exercise continued

. . . then use your table to decide which of the following are
true:

a) the probability that the couple’s next child will develop
clinical disease is 0.25;

b) the probability that two successive children will develop
clinical disease is 0.25 × 0.25;

c) the probability that their next child will be a carrier is
0.5;

d) the probability of a child being a carrier or having
disease is 0.75;

e) if their first child doesn’t have disease the probability
that the second won’t is (0.75)2.
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Answers

The answers are easy to obtain if the table is right:

Status Fortunate Carrier Diseased
Copies of Gene 0 1 2
Probability 0.25 0.5 0.25

Only statement (e) is false—all the others are true.
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Larger families

Suppose the couple from the previous exercise had a
family of three children, what is the distribution of the
number of diseased kids they’d have?

Number of

Ill Kids Probability

0

27/64 ≈ 0.42

1

27/64 ≈ 0.42

2

9/64 ≈ 0.14

3

1/64 ≈ 0.016

0 1 2 3

0.1

0.2

0.3

0.4

Distribution
for 3 children

P
ro

ba
bi

lit
y

Number of diseased kids
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Details

Number of diseased kids
︷ ︸︸ ︷

0 1 2 3
dhh ddh

Birth order hhh hdh dhd ddd
hhd hdd

Basic Prob.
(

3
4

)3 (
1
4

)
×

(
3
4

)2 (
1
4

)2 ×
(

3
4

) (
1
4

)3

Total Prob. 27
64

27
64

9
64

1
64
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Very large families

. . . or even 12 kids ?!?

0 1 2 3 4 5 6 7 8 9 10 11 12

0.05
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0.15

0.2

0.25
Distribution
for 12 children
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Number of diseased kids

P ( k diseased kids ) =
(

1

4

)k

×
(

3

4

)(12−k)

×
12!

k! (12 − k)!
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Bernoulli trials and the Binomial
Distribution

Generally speaking, if one is interested in N independent
trials (births, coin tosses, samples from the population at
large) of some experiment that has probability p of
“success” (getting a healthy child, getting Heads, finding
undiagnosed glaucoma), the probability of finding k
successes is

P ( k successes ) = pk(1 − p)N−k N !

k!(N − k)!
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Factors in the binomial distribution

P ( k successes ) = pk

(1 − p)N−k N !

k!(N − k)!

probability of k “successes”;

probability of (N − k) “failures”;

combinatorial factor: counts ways to arrange k
successes within string of N trials:

N ! = 1 × 2 × · · · × N

≈
(n

e

)n √
2πn
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The Poisson distribution

Suppose events happen randomly in time, but at a steady
rate r (for example, 5 events per minute, when averaged
over many hours). Then the probability of seeing exactly k
events in a time T

P ( k events ) =
(rT )k

k!
e−rT .

If events happen randomly and independently in space

(rather than time), then r is the rate per unit area or vol-

ume and the Poisson distribution gives the probability of k

events in area or volume T .
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Expectation

The expected value of a random variable X, denoted
E(X), is just the mean of X and one calculates it with a
sum like this:

E(X) =
∑

All possible values xj

P (xj) × xj
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More expectation

Example:
Find the mean score expected in a single roll of a fair die.

Answer:
The possible results are 1, 2, . . . 6 and each is equally
likely so the expectation is

(
1

6

)

× 1 +

(
1

6

)

× 2 + . . . +

(
1

6

)

× 6

which comes to (1 + 2 + · · · + 6)/6 or (21/6) = 3.5.
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Mean and variance

Earlier in the term we saw how to calculate the mean and
variance of a sample of data: they were descriptive
statistics. It is also possible to define the mean and
variance of a distribution: they are

mean: µ = E(X)

variance: σ2 = E((X − µ)2).

An important statistical question is:

How well does a mean from a sample approximate
the mean of the underlying distribution?
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Example: the binomial distributions

Consider a binomial experiment of N trials with probability
of success p: and take the random variable X = number of
successes. Then

E(X) = pN

σ2 = p(1 − p)N

As you will see in the homework, this bears directly on the

problem of estimating frequencies.
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Tossing many coins
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Remarks

The previous slide showed a group of relative-frequency
histograms for experiments on increasingly large numbers
of fair coins. On top of these were curves that made better
and better approximations to the histograms:

height of bar above j is probability of getting j heads;

width of bar above j is one, so area of bar above j is
P ( j heads );

total area covered by bars is one;

total area beneath curve is one.
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Passing to continuity

These observations suggest a way to make distributions
for continuous random variables Y : use a function f(y)
with the properties

f(y) ≥ 0 for all values of y;

∫ ∞

−∞
f(y) dy = 1

Functions with these properties are called probability den-

sity functions or pdf’s for short.
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Using continuous densities

The probability that Y falls in a range a ≤ Y ≤ b is:

∫
b

a

f(y) dy

Expectations are computed by doing integrals rather than sums

µ = E(Y ) =

∫
∞

−∞

y f(y) dy

and

σ2 = E((Y − µ)2) =

∫
∞

−∞

(y − µ)2 f(y) dy
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The famous normal

The curves plotted on top the histograms were examples of
the normal distribution, a continuous probability distribution
given by the formula

f(y) =
exp [−(y − µ)2/(2σ2)]

√
2πσ2

Normals used to approximate the binmoial histograms had

mean µ = N/2 and variance σ2 = N/4 — the same as the

binomial distributions.
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The standard normal

The curves a few slides back had the same mean and
variance as the binomial distribs they were approximating,
but the one below is the standard normal with µ = 0 and
σ = 1.
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Properties of the normal

a) It is “bell-shaped” and symmetric about its mean.

b) Its mean, median and mode are all the same—zero for
the standard normal.

c) It is determined by two parameters, its mean µ and its
standard deviation σ. The latter determines the width
of the bell curve in all the following senses:

i) geometrically, the full width of the bell-shaped curve as measured at half its
maximum height (FWHM) is σ

√
8 log 2 ≈ 2.3σ.

ii) ≈ 68% of the values lie within a band ±σ around the mean.

iii) ≈ 95% of the values lie within a band ±2σ around the mean.

iv) ≈ 99.7% of the values lie within a band ±3σ around the mean; the distribution

is thus approximately 6σ wide.
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