
Overview

Today we’ll discuss ways to learn how to think about events
that are influenced by chance.

Basic probability: cards, coins and dice

Definitions and rules: mutually exclusive events and
independent events

Expectation: given probabilites, what can we compute?

Conditional probability: for example, the probability that a
child smokes, given that her parents do.

More applications: why it’s very hard to detect rare
things.
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What does probability mean?

To say that an event has probability p means that the
long-term average of

Number of times event occurs
Number of times it could have occured

is p.

Example 0.1 (A fair coin)

Two possible outcomes: Heads and Tails

Each assumed equally likely, so

P (Heads) = P (Tails) = 1/2

Discrete Probability – p.2/24



Properties of probabilities

Probabilities are numbers 0 ≤ p ≤ 1.

Given an exhaustive list of possible outcomes, their
probabilities add up to one.

The pair “A happens” and “A doesn’t happen” are
exhaustive, so

P (not A) = 1 − P (A)
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Mutually exclusive events

Two events are mutually exclusive if one precludes the
other, for example: “Toss a coin and get Heads” and “Get
Tails on the same toss”.

Example 0.2 (Drawing cards)
Consider drawing a card from an ordinary deck: what it the
probability of getting an ace?

Answer

Number of aces
Number of cards in deck

=
4

52
=

1

13
.
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Addition rule for mutually exclusive
events

The previous example suggests a rule for working out the
probability of either of two mutually exclusive events
happening: If A & B are mutually exclusive events,

P (A or B) = P (A) + P (B).

Example 0.2 (Rolling a die)
A single roll of a die may show a 1 or a 2, but not both. The
probability that it shows either a 1 or a 2 is

1/6 + 1/6 = 1/3.
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Independent events

Two events are independent if knowing that one has
happened tells us nothing about whether the other will
happen.

Example 0.2 (Tossing two coins)
Consider tossing a penny and a pound coin.

Use h & t to show the result for the penny, and H & T,
for the pound.

Possible outcomes are {hH, hT, tH, tT}. Each is equally
likely.
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Multiplication rule for independent
events

By counting it is clear that
P(Heads on penny) = (2/4) = 0.5
P(Heads on pound) = (2/4) = 0.5
P(Heads on both) = (1/4) = 0.25

Example suggests a rule for probability of two independent
events happening together: If A & B are independent
events,

P (A and B) = P (A) × P (B).
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More about combining events

Finally, there is a rule for combining the probabilities of
events that are not mutually exclusive (i.e. those for which
P (A & B) 6= 0).

Generally, P(A or B) = P(A) + P(B) - P(A & B).

To see how this works consider rolling two dice, one
six-sided and one four-sided and consider events

A The four-sided die comes up an even number;

B The sum of the two rolls is an even number.
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Outcomes for the two dice

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

Outcomes contributing to event A appear in dashed boxes.

Those contributing to event B are circled.

Six outcomes contribute to both events.
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Using the rule

Counting up events from the diagram, one can see the rule
in action

P (A or B) = P (A) + P (B) − P (A and B)

= (12/24) + (12/24) − (6/24)

= (1/2) + (1/2) − (1/4)

= (3/4)
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Review: mutually exclusive events

If A & B are mutually exclusive, which of the following
statements are true?

a) P (A or B) = P (A) + P (B)

b) P (A and B) = 0

c) P (A and B) = P (A) × P (B)

d) P (A) = P (B)

e) P (A) + P (B) = 1

Answer: only a) and b) are true.
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Review: independence

The probability of a certain hard-to-manufacture chip
having fault X is 0.20 while the probability of it having flaw
Y is 0.05. If these probs are independent, which of the
following is true?

a) prob. it has both faults is 0.01;

b) prob. it has both faults is 0.25;

c) prob. it has either fault, or both, is 0.24;

d) if it has X, prob. it has Y also is 0.01;

e) if it has Y , prob. it has X also is 0.20.

Answer: a), c) and e) are true.
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Conditional probability

Want a concise notion/notation for the probability that one
event occurs, given that another has.

Example 0.2 Roll a six-sided die: what is the probability of
getting a two, given that the result is an even number?
There are three possible even numbers, { 2, 4, 6 } and only
one of them is a 2, so by direct counting the probability is
(1/3).
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The notation P(A|B)

Write conditional probabilities as P (A|B) and read them as
“the probability of A given B". Examples include:

P ( It will rain tomorrow | it is raining now )

P ( It will rain tomorrow | one is in Manchester )

P ( Woman gets breast cancer | mother and sister did )
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A sum rule

The simplest rule about conditional probabilities underlies
reasonable statements such as:

P ( rain | Manchester ) + P ( no rain | Manchester ) = 1.

More formally, the rule is

If one has an exhaustive list of mutually exclusive
events then their conditional probabilities add up to
one.
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Recovering ordinary probabilities

Sometimes one needs to pass from conditional
probabilities back to non-conditional ones. The main tool
one needs is the formula:

P (A&B) = P (A|B) × P (B) (?)
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Using conditional probability

Epidemiology of lung cancer

Divide subjects into three groups
Heavy smokers: more that 40 a day
Smokers: up to 39 per day
Non-smokers: none

Find risk of cancer for each group, e.g.

P (lung cancer | heavy smoker).

continued . . .
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Using . . .

Use conditional probabilities to find risk for general
population:

P ( subject develops lung cancer )

= P ( [cancer & heavy smoker] or
[cancer & smoker] or
[cancer & non-smoker])

= P ( cancer & heavy smoker ) +

P ( cancer & smoker ) +

P ( cancer & non-smoker )
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Using . . .

Then use (?) to say

P ( subject develops lung cancer ) =

P ( cancer | heavy smoker ) × P ( heavy smoker ) +

P ( cancer | smoker ) × P ( smoker ) +

P ( cancer | non-smoker ) × P ( non-smoker )
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Bayes Theorem

On the left side of (?) the events A and B play the same
role: A&B means the same thing as B&A. On the right
things seem to be different: P (A|B) is not generally the
same as P (B|A), but

P (A|B) × P (B) = P (A&B)

= P (B&A)

= P (B|A) × P (A)

which means P (A|B) × P (B) = P (B|A) × P (A)

This final expression is sometimes known as Bayes
Theorem.
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Application: screening for rare
conditions

Consider a screening program for a CCTV system that
observes Manchester’s city centre

target population (say, persons subject to exclusion
orders) is rare (1 per 10,000 of population);

test correctly flags 99% of such persons (true positive);

test flags only 0.5% of ordinary shoppers (false
positive).

What is the probability that when the system identifies a
suspect, they really do pose a threat?
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Formulate the problem

Using the lanuage of conditional probability

we want P ( threat | positive test );

we have
P ( pos | threat ) = 0.99
P ( pos | ordinary ) = 0.005
P ( threat ) = 0.0001
P ( ordinary ) = (1 − P ( threat )) = 0.9999

Start with Bayes Theorem

P ( threat | pos )×P ( pos ) = P ( pos | threat )×P ( threat )
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Solve for necessary probabilities

P ( threat | pos ) =
P ( pos | threat ) × P ( threat )

P ( pos )

We need P ( pos ), but we can find it with a calculation
similar to the one about probability of lung cancer sketched
earlier:

P ( pos ) = P ( pos | threat ) × P ( threat )

+ P ( pos | ordinary ) × P ( ordinary )
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Assemble results

P ( ill | pos )

=
P ( pos | threat ) × P ( threat )

P ( pos )

= (0.99 × 0.0001)/(0.99 × 0.0001 + 0.005 × 0.9999)

≈ 0.019

Discouraging: a positive result from a implausibly precise
recognition system gives only a lukewarm indication that a
person may pose a problem.
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