Overview

Today we'll discuss ways to learn how to think about events that are influenced by chance.

- Basic probability: cards, coins and dice

6 Definitions and rules: mutually exclusive events and independent events

- Expectation: given probabilites, what can we compute?
- Conditional probability: for example, the probability that a child smokes, given that her parents do.
- More applications: why it's very hard to detect rare things.

What does probability mean?

To say that an event has probability p means that the long-term average of

Number of times event occurs
Number of times it could have occured
is p.

Example 0.1 (A fair coin)

Two possible outcomes: Heads and Tails

- Each assumed equally likely, so

$$
P(\text { Heads })=P(\text { Tails })=1 / 2
$$

Properties of probabilities

- Probabilities are numbers $0 \leq p \leq 1$.

Given an exhaustive list of possible outcomes, their probabilities add up to one.

The pair " A happens" and " A doesn't happen" are exhaustive, so

$$
P(\text { not } A)=1-P(A)
$$

Mutually exclusive events

Two events are mutually exclusive if one precludes the other, for example: "Toss a coin and get Heads" and "Get Tails on the same toss".

Example 0.2 (Drawing cards)

Consider drawing a card from an ordinary deck: what it the probability of getting an ace?

Mutually exclusive events

Two events are mutually exclusive if one precludes the other, for example: "Toss a coin and get Heads" and "Get Tails on the same toss".

Example 0.2 (Drawing cards)

Consider drawing a card from an ordinary deck: what it the probability of getting an ace?

Answer

$$
\frac{\text { Number of aces }}{\text { Number of cards in deck }}=\frac{4}{52}=\frac{1}{13} \text {. }
$$

Addition rule for mutually exclusive

 eventsThe previous example suggests a rule for working out the probability of either of two mutually exclusive events happening: If $A \& B$ are mutually exclusive events,

$$
P(A \text { or } B)=P(A)+P(B) .
$$

Example 0.2 (Rolling a die)

A single roll of a die may show a 1 or a 2, but not both. The probability that it shows either a 1 or a 2 is

$$
1 / 6+1 / 6=1 / 3 .
$$

Independent events

Two events are independent if knowing that one has happened tells us nothing about whether the other will happen.

Example 0.2 (Tossing two coins)
Consider tossing a penny and a pound coin.

- Use h \& t to show the result for the penny, and H \& T, for the pound.
- Possible outcomes are $\{\mathrm{hH}, \mathrm{hT}, \mathrm{tH}, \mathrm{tT}\}$. Each is equally likely.

Multiplication rule for independent

 events- By counting it is clear that
$P($ Heads on penny $)=(2 / 4)=0.5$
$P($ Heads on pound $)=(2 / 4)=0.5$
$P($ Heads on both $)=(1 / 4)=0.25$
Example suggests a rule for probability of two independent events happening together: If A \& B are independent events,

$$
P(A \text { and } B)=P(A) \times P(B)
$$

More about combining events

Finally, there is a rule for combining the probabilities of events that are not mutually exclusive (i.e. those for which $P(A \& B) \neq 0)$.

$$
\text { Generally, } P(A \text { or } B)=P(A)+P(B)-P(A \& B) \text {. }
$$

To see how this works consider rolling two dice, one six-sided and one four-sided and consider events
A The four-sided die comes up an even number;
B The sum of the two rolls is an even number.

Outcomes for the two dice

(6) Outcomes contributing to event A appear in dashed boxes.
(6) Those contributing to event B are circled.

6 Six outcomes contribute to both events.

Using the rule

Counting up events from the diagram, one can see the rule in action

$$
\begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
& =(12 / 24)+(12 / 24)-(6 / 24) \\
& =(1 / 2)+(1 / 2)-(1 / 4) \\
& =(3 / 4)
\end{aligned}
$$

Review: mutually exclusive events

If $A \& B$ are mutually exclusive, which of the following statements are true?
a) $P(A$ or $B)=P(A)+P(B)$
b) $P(A$ and $B)=0$
c) $P(A$ and $B)=P(A) \times P(B)$
d) $P(A)=P(B)$
e) $P(A)+P(B)=1$

Review: mutually exclusive events

If $A \& B$ are mutually exclusive, which of the following statements are true?
a) $P(A$ or $B)=P(A)+P(B)$
b) $P(A$ and $B)=0$
c) $P(A$ and $B)=P(A) \times P(B)$
d) $P(A)=P(B)$
e) $P(A)+P(B)=1$

Answer: only a) and b) are true.

Review: independence

The probability of a certain hard-to-manufacture chip having fault X is 0.20 while the probability of it having flaw Y is 0.05 . If these probs are independent, which of the following is true?
a) prob. it has both faults is 0.01 ;
b) prob. it has both faults is 0.25 ;
c) prob. it has either fault, or both, is 0.24 ;
d) if it has X, prob. it has Y also is 0.01 ;
e) if it has Y, prob. it has X also is 0.20 .

Review: independence

The probability of a certain hard-to-manufacture chip having fault X is 0.20 while the probability of it having flaw Y is 0.05 . If these probs are independent, which of the following is true?
a) prob. it has both faults is 0.01 ;
b) prob. it has both faults is 0.25 ;
c) prob. it has either fault, or both, is 0.24 ;
d) if it has X, prob. it has Y also is 0.01 ;
e) if it has Y, prob. it has X also is 0.20 .

Answer: a), c) and e) are true.

Conditional probability

Want a concise notion/notation for the probability that one event occurs, given that another has.
Example 0.2 Roll a six-sided die: what is the probability of getting a two, given that the result is an even number? There are three possible even numbers, $\{2,4,6\}$ and only one of them is a 2 , so by direct counting the probability is (1/3).

The notation $P(A / B)$

Write conditional probabilities as $P(A \mid B)$ and read them as "the probability of A given B ". Examples include:

6 $\quad P$ (It will rain tomorrow \mid it is raining now $)$
6 P (It will rain tomorrow | one is in Manchester)
© $P($ Woman gets breast cancer | mother and sister did)

A sum rule

The simplest rule about conditional probabilities underlies reasonable statements such as:
$P($ rain \mid Manchester $)+P($ no rain \mid Manchester $)=1$.

More formally, the rule is
If one has an exhaustive list of mutually exclusive events then their conditional probabilities add up to one.

Recovering ordinary probabilities

Sometimes one needs to pass from conditional probabilities back to non-conditional ones. The main tool one needs is the formula:

$$
P(A \& B)=P(A \mid B) \times P(B)
$$

Using conditional probability

Epidemiology of lung cancer
6 Divide subjects into three groups
Heavy smokers: more that 40 a day

- Smokers: up to 39 per day
- Non-smokers: none
- Find risk of cancer for each group, e.g.

$$
P \text { (lung cancer | heavy smoker). }
$$

continued ...

Using . . .

Use conditional probabilities to find risk for general population:
P (subject develops lung cancer)
$=P($ [cancer \& heavy smoker] or [cancer \& smoker] or [cancer \& non-smoker])
$=P($ cancer $\&$ heavy smoker $)+$ $P($ cancer \& smoker $)+$ $P($ cancer \& non-smoker)

Using . . .

Then use (\star) to say
$P($ subject develops lung cancer $)=$
$P($ cancer \mid heavy smoker $) \times P($ heavy smoker $)+$
$P($ cancer \mid smoker $) \times P($ smoker $)+$
$P($ cancer \mid non-smoker $) \times P($ non-smoker $)$

Bayes Theorem

On the left side of (\star) the events A and B play the same role: $A \& B$ means the same thing as $B \& A$. On the right things seem to be different: $P(A \mid B)$ is not generally the same as $P(B \mid A)$, but

This final expression is sometimes known as Bayes Theorem.

Application: screening for rare

 conditionsConsider a screening program for a CCTV system that observes Manchester's city centre
target population (say, persons subject to exclusion orders) is rare (1 per 10,000 of population);

- test correctly flags 99% of such persons (true positive);

6 test flags only 0.5% of ordinary shoppers (false positive).

What is the probability that when the system identifies a suspect, they really do pose a threat?

Formulate the problem

Using the lanuage of conditional probability

- we want P (threat | positive test);

6 we have

$$
\begin{aligned}
& P(\text { pos } \mid \text { threat })=0.99 \\
& P(\text { pos } \mid \text { ordinary })=0.005 \\
& P(\text { threat })=0.0001 \\
& P(\text { ordinary })=(1-P(\text { threat }))=0.9999
\end{aligned}
$$

Start with Bayes Theorem
$P($ threat \mid pos $) \times P($ pos $)=P($ pos \mid threat $) \times P($ threat $)$

Solve for necessary probabilities

$$
P(\text { threat } \mid \text { pos })=\frac{P(\text { pos } \mid \text { threat }) \times P(\text { threat })}{P(\text { pos })}
$$

We need $P($ pos), but we can find it with a calculation similar to the one about probability of lung cancer sketched earlier:

$$
\begin{aligned}
P(\text { pos })= & P(\text { pos } \mid \text { threat }) \times P(\text { threat }) \\
& +P(\text { pos } \mid \text { ordinary }) \times P(\text { ordinary })
\end{aligned}
$$

Assemble results

$$
\begin{aligned}
& P(\text { ill } \mid \text { pos }) \\
& =\frac{P(\text { pos } \mid \text { threat }) \times P(\text { threat })}{P(\text { pos })} \\
& \quad=(0.99 \times 0.0001) /(0.99 \times 0.0001+0.005 \times 0.9999) \\
& \quad \approx 0.019
\end{aligned}
$$

Discouraging: a positive result from a implausibly precise recognition system gives only a lukewarm indication that a person may pose a problem.

