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Figure 1.1: Four decades of measles data for Manchester.

1 Describing Data

The aim of the first part of this lecture is to present certain standard ways of exploring,
summarizing and presenting data. I’ll mainly discuss the definitions and uses of
numerical quantities such as the mean, median, mode, range, variance and standard
deviation, but I’ll also introduce some graphical techniques.

The examples in this lesson will be of two sorts: fictitious data sets made up to
illustrate certain pedagogical points and one real sample drawn from a large data
set assembled by Dr. Ben Bolker. The latter is a weekly record of reported cases of
measles in seven British cities: London, Bristol, Liverpool, Manchester, Newcastle,
Birmingham and Sheffield. The data for Manchester are pictured in Figure 1.1.

Example 1.1 (Mancunian Measles around New Year) Here, in chronological
order, are the number of measles cases reported in Manchester during the first week
of January for each of the years 1949-1987.

389, 15, 767, 78, 413, 0, 631, 35, 410, 10, 133, 20, 330, 32, 322, 21, 177,
62, 185, 9, 129, 39, 22, 40, 48, 12, 0, 8, 70, 9, 15, 7, 5, 1, 45, 4, 15, 22,
2

In what follows it will prove helpful to have these numbers sorted into ascending
order.

0,1,2,4,5,6,7,8,9,0, 12, 15, 15, 15, 16, 20, 21, 22, 22, 32, 35, 39, 45,
46, 48, 62, 70, 78, 129, 133, 177, 185, 322, 330, 339, 413, 416, 631, 767

But even after sorting, these data are not terribly instructive so we might try to pick
out a few numbers that help characterise the data.
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1.1 Measures of “central tendency”

The first thing one wants to know about a set of data is: “What is a typical value?”.
So, for example, one might ask “How many cases of measles are reported in the first
week of a typical year?” or “How much of the page area of a typical copy of The
Guardian is devoted to advertising?”, “What fraction of people pass their driving
tests on the first go?” or “How much does a typical fresher drink in her first week at
Uni?” The most common (statistical) answers to these sorts of questions are sketched
below and illustrated with the measles data:

Arithmetic Mean: This is probably the most common answer to the question:
“What’s a typical value?” One computes the

(sum of all values)/(number of values).

Here the result is 115.5 cases. This quantity is often called the average, in
everyday speech, but formal statistical discussions usually prefer mean. There
are two other associated conventions: when one is writing about the mean of a
whole population (not always a thing that is accessible experimentally) one uses
the greek letter ‘mu’: p; but when one is writing about the mean of a sample,
say, of a list of NV observations {x1, =, ..., xx}, then the mean is written & so
that the standard formula is:

Z;'V:lxj
N
T1+2x2+ ...+ 2N
N

Median: The median is that value which divides the data in half in the sense that
50% of the values are less than or equal to the median and 50% are greater.
When, as in the measles data, there is an odd number of measurements the
median is the value that falls in the middle of the sorted list; 32 cases in the
data above. When there is an even number of measurements the median is the
average of the middle two measurements in the sorted list. Thus if the data are

{3, 6, 7, 2} the sorted list is {2, 3, 6, 7} and the median is (3 + 6)/2 = 4.5.

Mode: the value that occurs most frequently: here it is 15 cases. Suppose, for
example, that once in the grip of incredible boredom you decided to count the
number of each colour of M&M in a package; the results might look like:

Colour Count

Blue 4
Green 5
Brown 3

Red 5

Orange 4

Here the most frequently occurring colours are green and red, so the data set
has two modes.
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1.2 Displaying and measuring variability

The measures of central tendency sketched above do a reasonable job of capturing
the notion of a typical measurement or value, but they give no information about the
the “spread” of the data—the way it is distributed around its central tendency. It’s
not at all difficult to make up two data sets that have the same mean despite being
very different: here is a pair invented by Dr. Kamlesh Chauhan from the Optometry
department for a course about similar topics. It lists the intraocular pressures (IOPs
in mm. Hg above atmospheric pressure) for two groups.

Optometrist IOP | Engineer I0P
14 16
15 17
15 15
15 13
15 13
15 10
15 20
16 16
15 10
15 8
14 15
15 19
14 17
16 13
15 23
15 13
15 18
15 12
15 17
16 15

Both columns of this table have the same sum, 300, and the same number of entries,
20, so both have the same arithmetic mean, z = (300/20) = 15. But the two sets of
measurements are really very different. To illustrate this, I will introduce a couple of
very useful kinds of plots, the frequency histogram and the cumulative frequency plot.

1.2.1 Drawing histograms

These plots essentially count the number of times that a particular value occurs in
the data set: this number is sometimes called the frequency with which the value is
observed. For the Optometrist’s data above such counting provides a very concise
summary: the value 14 mm. Hg occurs 3 times; the value 15 mm. Hg occurs 14 times
and the value 16 mm. Hg occurs 3 times. But the data from the Engineers are more
spread out and a straightforward count of frequencies-of-measurements isn’t really
all that helpful. Instead, we might tabulate the number of values that fall in certain
small intervals, as is done in the table below.
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Freq. Relative | Percentage | Cumulative
Interval Freq. Freq. Freq.
From | To (f/N) 100 (f/N) (%)
7.5 9.5 1 1/20 (0.05) 5.0 1 (5%)
9.5 |11.5 2 2/20 (0.1) 10.0 3 (15%)
11.5 | 135 5 5/20 (0.25) 25.0 8 (40%)
13.5 | 155 3 3/20 (0.15) 15.0 11 (55%)
15.5 | 175 5 5/20 (0.25) 25.0 16 (80%)
17.5 1195 2 2/20 (0.1) 10.0 18 (90%)
19.5 | 21.5 1 1/20 (0.05) 5.0 19 (95%)
21.5 | 235 1 1/20 (0.05) 5.0 20 (100%)
Totals N =20 1 (1) 100

Table 1.1: A summary of the IOP data from the Engineers. The intervals used here
are all the same width and their boundaries have been chosen so that all the data fall
inside intervals.

For the moment, concentrate on the first three columns, which are summarised
in Figure 1.2 below. The horizontal axis is divided up into the same intervals as
described in Table 1.1 and the heights of the bars show the number of measurements
that fall into each intervals’ range. Such a plot is called a frequency histogram and
the intervals are often called bins.
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Figure 1.2: A histogram of the IOP data from the Engineers.

When plotting a histogram there are a few guidelines that make for better-looking
and clearer figures:

a) The number of intervals should be of order 10-20: the idea is to strike a balance
between too many small intervals (most of which will contain just a few mea-
surements) and too few, from which one gets only a poor sense of the spread of
the data.

b) Intervals of equal width are convenient both graphically and for calculations.
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c) The endpoints of the intervals should have about the same accuracy as the
measurements themselves: if one’s data consists of whole numbers it makes
little sense to define edges of intervals that require three significant digits to
express.

The histogram is, all by itself, a powerful tool for exploring and displaying the
variation in a data set. Here are histograms for both the Engineers and the Op-
tometrists, both using the same bins as in Table 1.1 and plotted on the same scale. It
is immediately clear that although both groups have the same mean IOP, they differ
radically from each other.
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1.2.2 Cumulative frequency plots

The information in the remaining columns of Table 1.1 is related simply to the fre-
quencies used to plot the histogram: the fourth column, the one titled Relative Fre-
quency, gives the fraction of the total number of data points that fall in each bin; the
fiftth column just represents the relative frequency as a percentage. For example, the
bin that stretches from 11.5 to 13.5 (and so includes all the data with values 12 and
13) accounts for 5 out of 20, or 25% of the observations. The leftmost column in the
table is the most useful and it will serve as the foundation for the other plot I want
to introduce in this lesson. It shows the cumulative frequency. That is, it shows a
running total of the amount of data that has been accounted for as we move down the
table. Thus the first bin includes 1 point, so the cumulative frequency for the first bin
is 1. The second bin contains 2 points, so its cumulative total of points-accounted-for
is1 + 2 =3 ... and so on down the table until, with the last bin, we have accounted
for all 20 observations.

But there is another useful way to think of the cumulative frequency: it is the
amount of data that lies in a bin or any of the bins to its left. This means we can use
the cumulative frequency column to characterise values that are “large” or “small” as
compared with the bulk of the data. To see how, look at Figure 1.3. The horizontal
(x) axis has roughly the same range as the IOP data from the Engineers while the
vertical (y) axis is marked in units of percentage. The points on the curve have as
their z-coordinate the positions of the centres of the bins from Table 1.1 and have,
as their y-coordinate the corresponding cumulative frequency. The curve swoops up
from zero (for IOPs lower that the smallest observed value) to 100% for values greater
than the largest observed value. The dashed line near the top of the plot shows how
to use the cumulative frequency diagram to characterise an improbably large value:
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it stretches from the 95% mark over to the cumulative frequency curve; from there
it descends to that value of the IOP (20.5 mm Hg., reading from the graph) which is
greater than or equal to 95% of all observed values. But if 95% of all values are smaller
than this value, then only 5% can be greater: we have characterised an improbably
large value.
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Figure 1.3: A cumulative frequency plot of the IOP data from the Engineers. The
dashed line near the top show to use the cumulative frequency plot to characterise
improbably large values.

1.3 Numerical measures of variation

In the last two sections of the lecture we examined graphical means to explore the
distribution of data, but there are a also number of widely-used numerical measures
of variability and I will review them briefly below.

Range: the difference between the minimum and the maximum of the data. In the
measles data this is 767-0 = 767 cases.

Variance: in words, this is the sum of the squares of all the deviations of the values
from their mean divided by (number of values - 1). The variance, around 33293
for the measles data, is often written s? and in symbols is given by:

2 (v —2)*+ (22— 2)* + ... (zy — T)?
n N-—1
ﬁl(xj_jy
N -1

The reason one has to add up sums-of-squares is that the sum of the ordinary,
non-squared deviations from the mean is, because of the definition of the mean,
automatically zero.

This expression above is appropriate for analysing a sample (a smaller set of
data drawn from some larger population). If we were considering the whole of
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some finite population we would use slightly different symbols and formulae:

2 j‘vzl(xj B :u)

o = N

2

Here are a pair of tables that summarise the computation of the variance for
the Optometrists and Engineers above:

Optometrists Engineers
Deviation | Deviation® Deviation | Deviation®
I0P (x — ) (z — z)? I0P (x — ) (r — 1)?
mm. Hg | (z —15) | (z—15)? mm. Hg | (z —15) | (z—15)?
14 -1 1 16 1 1
15 0 0 17 2 4
15 0 0 15 0 0
15 0 0 13 -2 4
15 0 0 13 -2 4
15 0 0 10 -5 25
15 0 0 20 ) 25
16 1 1 16 1 1
15 0 0 10 -5 25
15 0 0 8 -7 49
14 -1 1 15 0 0
15 0 0 19 4 16
14 -1 1 17 2 4
16 1 1 13 -2 4
15 0 0 23 8 64
15 0 0 13 -2 4
15 0 0 18 3 9
15 0 0 12 -3 9
15 0 0 17 2 4
16 1 1 15 0 0
Totals 0.0 6.0 Totals 0.0 252.0
s? ~ 0.316 5?2~ 13.3

Standard Deviation: the square root of the variance. The main reason to take
square roots is to recover a measure of variability that has the same units as
the data. So, for example, the IOP data above had units of mm. Hg, as did
its mean. The variance thus has units of (mm)2 Hg, which doesn’t make sense
physically. The standard deviation is usually written as s for a sample and one
computes it with one of the formula:

= ey
N -1

It is the most common measure of the spread or breadth of a set of data. Many
scientific results are reported as =+ s. Fore the data above we might write that
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we had measured IOPs of 15 + 3.64 mm. Hg in the Engineers and 15 £ 0.562
mm. Hg in the Optometrists.

The mean, median and mode are all natural measures of the central tendency and
are useful for describing data that clusters around some particular value. The variance
and standard deviation are measures of the way the data are scattered around the
central tendency. The mean, variance and standard deviation are the most commonly
used measures and are particularly useful when discussing normally-distributed (more
on this soon) data.
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2 Discrete probability

The aim of this part of the lecture is to learn how to think about events whose
outcome is influenced by chance. Ultimately we will be interested in questions such as
“Given that I've just measured a difference between a sample of second-year Engineers
students and the third years, what is the chance that the two groups really are
different?” Answers to this sort of question come from the subject of hypothesis testing,
which is the main theme of the statistical part of the course. Today we will begin with
some simpler problems about the sort of probability needed to analyse coin-tossing
and card games, then show how these simple rules lay the foundations for hypothesis
testing.

2.1 Cards and coins

First we will consider various problems about coin tossing, card dealing and the rolling
of dicel~—perhaps the simplest sorts of random events. Let’s consider the prototypical
example, a fair coin. I'll imagine tossing it in the air and letting it fall flat so that it
shows either Heads or Tails. I'll then say that each of these outcomes has probability
0.5 and will mean that if I tossed the coin a great many times, I would expect Heads
to come up about half the time. Since Tails is the only other possible outcome, it
too must have a long term average of 0.5. This example illustrates many of the basic
notions about probability.

e Probabilities are numbers p with 0 < p < 1. To say an event has probability zero
means that we regard it as impossible; for example, rolling a 7 on an ordinary,
six-sided die has probability zero. To say that an event has probability one
means that it happens with certainty, e.g. rolling a number in the range 1-6 on
a die.

e [t is often helpful to make an exhaustive list of all the distinct possible outcomes
of a probabilistic experiment: { Heads, Tails } in the example above. Since one
of these two events must occur whenever we toss the coin, the probabilities of
all distinct possible outcomes should add up to one.

e Following the remark above, suppose an event A has probability P(A). Then
the probability that A does not occur must then be (1 — P(A)), for the pair of
events {A, (not A)} is the just sort of exhaustive list of outcomes mentioned
above.

2.1.1 Mutually exclusive events

The last item above suggests that we should be more scrupulous about defining a
probabilistic event. Let’s consider a slightly richer example, drawing playing cards
from a deck. We might ask: “What is the probability of drawing an ace?”. As

IThe strong flavour of gambling in these examples is not an accident: Blaise Pascal and Pierre
de Fermat laid the foundations of mathematical probability during a five letter exchange over the
summer of 1654. Much of this correspondence concerned games with dice.
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there are 52 cards it seems natural to divide the possible outcomes into 52 distinct,
mutually exclusive? events—one for each card.

But this division doesn’t help us to answer the question about aces; we need a way
to compute the probability of composite events, those made up by grouping together
two or more of our basic events. In this case it’s easy enough to see that there are 4
aces in the deck, so the probability of drawing one of them is:

Number of aces 4 1

Number of cards 52 13

As this example suggests, the way to compute the probability of a collection of mu-
tually exclusive events is to add them up:

If A & B are mutually exclusive events, P(A or B) = P(A) + P(B).

2.1.2 Independent events

Now consider flipping a pair of coins—say, a penny and a 50 pence coin—one after
the other. If we use lowercase letters, h & t, to indicate the result for the penny and
uppercase letters, H & T, for the 50p, then the complete list of possible outcomes
is {hH, hT, tH, tT}. As we have no reason to think Heads or Tails more likely for
either coin, we should imagine all four of these outcomes to be equally likely, so just
by counting it is clear that

e P(Heads on penny) = (2/4) = 0.5
e P(Heads on 50p) = (2/4) = 0.5
e P(Heads on both) = (1/4) = 0.25

There is a new relationship between events here and a new rule for combining their
probabilities. Getting Heads on the penny does not affect the chance of getting Heads
on the 50p, so the two events are said to be independent of each other. If we consider
the combined experiment of tossing both coins we end up with a new list of outcomes
that is a kind of “product” of the outcomes of the two tosses. And the probabilities
are products too. The rule is:

If A and B are independent events, P(A & B) = P(A) * P(B).

2.1.3 More about combining events

Finally, there is a rule for combining the probabilities of events that are not mutually
exclusive (i.e. those for which P(A & B) # 0).

Generally, P(A or B) = P(A) + P(B) - P(A & B).

To see how this last rule works, consider rolling two dice, one six-sided and one
four-sided® Let us take as our events

2Two events are said to be mutually exclusive if they cannot both occur at the same time.

3The fantasy role-playing game community makes use of all sorts of weird dice: 4, 6, 8, 12 and 20
sided dice are fairly common and I have have heard of 100-sided dice that look a bit like a golf-balls,
though I've never seen one.
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Figure 2.1: The 24 possible outcomes of a game of chance in which the player rolls
one four-sided die and one siz-sided die.

A The four-sided die comes up an even number;
B The sum of the two rolls is an even number.

Using the rule above, along with the facts that P(A) = 1/2, P(B) = 1/2 and
P(A&B) = 1/4, we find P(AorB) = (1/2) + (1/2) — (1/4) = (3/4). To make this a
little clearer, consider the diagram above. It shows an exhaustive list of the 24 pos-
sible ways that the rolls can turn out: by assumption, each of these is equally likely
and so has probability (1/24). Those that correspond to event A (first roll is even)
are enclosed in dashed horizontal boxes while those that correspond to event B are
encircled by ovals. Counting things up, one finds half (12) of the possible outcomes
in the A-boxes, half in the B-boxes and three quarters (18) in one or both of the A
and the B boxes. There are 6 entries that appear in both the A and B boxes. Making
the probability computation explicit

P(AorB) = P(A)+ P(B)— P(A and B)
(12/24) + (12/24) — (6/24)
= (1/2) +(1/2) = (1/4)

(3/4)
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2.1.4 Conditional probability

There is one more basic probabilistic concept that proves useful: conditional proba-
bility. The idea is to have a concise notation for the probability of one event, given
that another has occurred. For example:

Example 2.1 In rolling a siz-sided die, what is the probability of getting a two, given
that the result is an even number?

There are three possible even numbers, { 2, 4, 6 } and only one of them is a 2, so, by
direct counting, the probability is (1/3).

Generally one writes conditional probabilities as P(A|B) and read them as “the
probability of event A given event B” or, more briefly, “the probability of A given
B”. Less frivolous and more useful applications of the idea might include:

e P( It will rain tomorrow | it is raining now )
e P( It will rain tomorrow | one is in Manchester )
e P( A woman gets breast cancer | her mother and sister did )

The simplest rule about conditional probabilities lies behind such intuitively reason-
able statements as:

P( rain | Manchester ) + P( no rain | Manchester ) = 1.

More formally, the rule is that if one has an exhaustive list of mutually exclusive
events then their conditional probabilities add up to one.

Sometimes one needs to pass from conditional probabilities back to non-conditional
ones. The main tool one needs is the formula:

P(A&B) = P(A|B) x P(B) (2.1)

To see how to use it, suppose that we are studying the epidemiology of lung cancer
and are interested in the influence of smoking. We might divide our subjects into
three categories—say, heavy smokers (40 or more cigarettes daily), smokers (up to 39
cigarettes per day) and non-smokers—and then examine the risk for each, measur-
ing, for example, P( subject develops lung cancer | smokes > 40 cigs. daily ). But
we might also be interested in P( subject develops lung cancer ) and we could com-
pute it using:

P( subject develops lung cancer )
= P( [cancer & heavy smoker| or [cancer & smoker| or [cancer & non-smoker] )
= P( cancer & heavy smoker ) + P( cancer & smoker ) +

P( cancer & non-smoker )

To get this we have used only the rule about combining mutually exclusive events: our
three categories of smoker are mutually exclusive and so the events “cancer & heavy
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smoker”, “cancer & smoker” and “cancer & non-smoker” are mutually exclusive and
so their probabilities just add, as described in Section 2.1.1. Now if we use Equation
(2.1) above we obtain

P( subject develops lung cancer ) =
P( cancer | smokes > 40 cigs. daily ) x P( smokes > 40 cigs. daily ) +
P( cancer | smokes 1 to 39 daily ) x P( smokes 1 to 39 daily ) +

P( cancer | doesn’t smoke ) x P( doesn’t smoke )

Look again at Equation (2.1). Notice that on the left hand side of the expression
the events A and B play essentially the same role: A& B means the same thing as
B&A. But on the right side things appear to be different: P(A|B) is not generally
the same as P(B|A) so? it seems that A and B aren’t playing equivalent roles on the
right. But they must be, as the following calculations show:

P(A|B) x P(B) = P(A&B)
~ P(B&A)
= P(B|A) x P(A)
which means P(A|B) x P(B) = P(BJA) x P(A)

This final expression is sometimes known as Bayes Theorem and is one of the most
useful formulae in the theory of probability.

Example 2.2

Out of a group of 50 patients being treated for a severe allergy, 10 are chosen at
random to receive a new dietary treatment as opposed to the more usual drug therapy
which the remaining 40 patients receive. Suppose it is known (from other studies) that
the probability of a cure with the standard treatment is 0.6, while the probability of a
cure from the new treatment is 0.9. Some time later, one of the 50 patients returns to
thank the staff for her complete recovery. What is the probability that she was given
the new treatment?

In the language of conditional probability, we are asked to find

P( new treatment | cure ).

The problem tells us that the patients receiving the new treatment were chosen at
random, so we have

P( new treatment ) = (10/50) = 0.2
P( standard treatment ) = (40/50) = 0.8

and we are also told

P(cure | new ) = 0.9
P(cure|std) = 0.6

4To see that they aren’t the same, just substitute in some words: P( rain | Manchester )—the
probability that it is raining given that one is in Manchester—is a biggish number and very different
from P( Manchester | rain ), which is the probability that, given that it is raining, one can conclude
that one is in Manchester.
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where I have abbreviated the phrases “new treatment” and “standard treatment” as

“new” and “std”. The way to proceed now is to use Bayes Theorem, Equation (2.2).
It says that

P(new | cure ) x P(cure ) = P( cure | new ) x P( new )
P( cure | new ) x P( new )
P( cure )

or P(new | cure ) =

The bottom line is something of an advance in that it has the expression we want
on its left side and, mostly, has probabilities that we know on the right. The only
exception is P( cure ). But we can evaluate that using conditional probabilities:

P(cure) = P(cure|new)x P(new ) + P( cure |std ) x P(std)
= (0.9) x (0.2) + (0.6) x (0.8)
= 0.184+0.48
= 0.66

Putting this back into our expression above:

P( cure | new ) x P( new )
P( cure )

= ((0.9) x (0.2))/0.66

— (0.18/0.66)

0.273

P(new | cure ) =
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