
Statistics and Machine Learning 1 Lab 1

Lab 1: Randomness and Associated Algorithms

M. Muldoon <mark.muldoon@manchester.ac.uk>

Tuesday 27 September

Thework for this week involves a set of three computer exercises described below. Asmany of you
will just be starting to learn Python, I have provided a notebook, Lab1.ipynb to help guide you
through the exercises. You needn’t worry in detail about what the code does, but you should study
it enough that you canmodify it to performvariations on the simulations discussed below. Youwill
also need a file of census data, Data_AGE_UNIT.csv. Both of these are available on BlackBoard
alongside this sheet.

1 Generation of pseudo‑random numbers
1.1 The logistic map
Consider a series of numbers x1, x2, …generated using the rule

xn+1 = rxn(1− xn) (1)

If we start with 0 < x0 < 1, we are guaranteed that the subsequent xi will remain in the range
0 < xi < 1 provided 0 < r < 4. It turns out that if we choose r close to its upper limit, the
behaviour of the sequence of x’s becomes less and less “predictable”. There are ways to quantify
this unpredictability, but for now our aim is to develop intuition, simulate and visualise, so try
different values of x1 as well as increasing values of r such as r = 3, r = 3.9, r = 3.99, r = 3.999,
etc. Plot the sequencesof numbers generated, and consider howwell you canpredictxi+1,xi+2 . . .
given xi for various values of r.

1.2 Use of “entropy”
The logisticmap, Eqn. (1), is an example of deterministic chaos, that is, it’s a rule that the computer
can follow, but whose results are apparently not easy to predict. An alternative approach is to
generate randomness by drawing on factors external to the computer, for example the location
and timing ofmouse clicks. Here, wewill consider using as an external factor the time at which the
code is run. The sample code takes a particular approach to this, using the six decimal digits of the
system clock’s current time (which is available at microsecond resolution). Try to work out what
the code is doing and decide whether you think it is sensible.

1.3 Random number generation in practice
A common approach to pseudo‑random number generation in practice is for the computer to ac‑
cumulate “entropy” from external events, then use these as a “seed” for a deterministic rule with
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good properties—for example the Mersenne Twister, which is the default random number genera‑
tor in R andMATLAB. Fromnow on, wewill use the randomnumber generation functions provided
by software packages, and behave as though they are truly random; but the impossibility of gen‑
erating truly random numbers remains a potential source of errors in data science.

2 Estimation of π using Monte Carlo methods

Suppose we define π to be the area of a circle whose radius is
1, and then want to estimate its numerical value. Here we will
use a “Monte Carlo” method to estimate this number, given its
definition. Consider the plot on the right—the quarter circle will
have an area of π/4. Our intuition is that if we were to shoot an
automatic paintball gunat this target (anexperimentperformed
by Prof. D. Spiegelhalter and the BBC) the ratio of spots inside
the quarter‑circle to those inside the square would be π/4. 0 0.2 0.4 0.6 0.8 1
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So our algorithm is as follows: wewill pick randomvalues ofx and y independently fromauniform
distribution between 0 and 1, then let the random variableZ equal 1 if the point (x, y) falls within
the quarter‑circle shown and 0 otherwise. This Z allows us to make an estimate of π in that its
expected value, E[Z] = π/4. We can then define a random variable An to be the average of n
independent samples ofZ. Formally:

An :=
1

n

n∑
i=1

Zi =
π

4
+ εn,

where the Zi are copies of Z and εn is the error. But this is not much use without knowing how
confident we can be in the estimate.

For a simple system such as this it is possible to calculate the error analytically, but in the spirit
of Monte Carlo simulation, we will use a more general approach called parametric bootstrapping,
where wemakem simulations ofAn, and remove the largest and smallest α% to give an estimate
of the (100 − 2α)% confidence region. Experiment with different values ofm and n. In generalm
does not need to be large, but we want n to be as big as possible, or at least as big as is necessary
to achieve a desired accuracy.

3 Working with Census Data
Finally, we will look at census data from 2011 on the distribution of ages in the Manchester Local
Authority. These come in a format that requires some tidying up, which I have done for you. When
these data are plotted they demonstrate a lot of “wiggles”’ (local minima and maxima) in the his‑
togram. If developing policy for the city, one thing we might want to know is: Howmany of these
local maxima are worth paying attention to—note, for example, the effect of students, which is
certainly real and affects city policy—and howmany are just noise? We will address this question
using bootstrapping (which is related to, but different from, the parametric bootstrapping we’ve
just met).

Suppose we have a sample of size n (in this case n ≈ 5 × 105, but you should work out the exact
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value from the data). In bootstrapping, we sample uniformly at random from the set of ages n
times with replacement and treat this as a new dataset called the bootstrap sample. We take m
such bootstrap samples and, for any quantity of interest that is derived from the original data,
calculate it for each of them bootstrap samples. We then remove the largest and smallest α% of
these to give an estimate of the (100− 2α)% confidence region for the quantity of interest.

Exercise:

• Bootstrap the data, generatingm bootstrap samples.

• For each bootstrap sample, generate a histogram whose bins are one‑year wide and count
the number of people who are a given age (in years). Keep track of the number of people
(in the bootstrap samples) who fall into each age‑band. The result should be a big table
whose rows are labelled by sample numbers and whose columns are labelled by ages in
years: 0, 1, . . . .

• For each age, find a 95%confidence band for the number of peoplewith that age. Plot these.

• Use the result to decide which local maxima appear “significant”.
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