Nominal Outcomes

Ordinal Variables

Statistical Modelling in Stata:
Categorical Outcomes

Mark Lunt
Centre for Epidemiology Versus Arthritis
University of Manchester

19/11/2019

Categorical Outcomes

- Nominal
- Ordinal

Nominal Outcomes

Categorical, more than two outcomes
No ordering on outcomes

R by C Table: Example

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>Males</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indemnity</td>
<td>234 (51%)</td>
<td>60 (40%)</td>
<td>294 (48%)</td>
</tr>
<tr>
<td>Prepaid</td>
<td>196 (42%)</td>
<td>81 (53%)</td>
<td>277 (45%)</td>
</tr>
<tr>
<td>No Insurance</td>
<td>32 (7%)</td>
<td>13 (8%)</td>
<td>45 (7%)</td>
</tr>
<tr>
<td>Total</td>
<td>462 (100%)</td>
<td>154 (100%)</td>
<td>616 (100%)</td>
</tr>
</tbody>
</table>

\(\chi^2 = 6.32, p = 0.04 \)

`tab insure male, co chi2`
Analysing an R by C Table

- χ^2-test: says if there is an association
- Need to assess what that association is
- Can calculate odds ratios for each row compared to a baseline row

Odds Ratios from Tables

- Prepaid vs Indemnity
 - OR for males = $\frac{81 \times 234}{60 \times 196} = 1.61$
- No Insurance vs Indemnity
 - OR for males = $\frac{13 \times 234}{60 \times 32} = 1.58$

Multiple Logistic Regression Models

- Previous results can be duplicated with 2 logistic regression models
 - Prepaid vs Indemnity
 - No Insurance vs Indemnity
- Logistic regression model can be extended to more predictors
- Logistic regression model can include continuous variables

Multiple Logistic Regression Models: Example

```
.logistic insure1 male
---------------------------------------------------------------------------
insure1 | Odds Ratio Std. Err.    z  P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------
male | 1.611735    .3157844  2.44  0.015    1.09779   2.36629
---------------------------------------------------------------------------

.logistic insure2 male
---------------------------------------------------------------------------
in sure2 | Odds Ratio Std. Err.    z  P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------
male | 1.584375    .5693029  2.64  0.008    1.09779   2.36629
---------------------------------------------------------------------------
```
It would be convenient to have a single analysis give all the information.

Can be done with multinomial logistic regression.

Also provides more efficient estimates (narrower confidence intervals) in most cases.

Multinomial Regression in Stata

- **Command**: `mlogit`
- **Option**: `rrr` (Relative risk ratio) gives odds ratios, rather than coefficients
- **Option**: `baseoutcome` sets the baseline or reference category

Multinomial Regression Example

```stata
.mlogit insure male, rrr
Multinomial logistic regression                     Number of obs = 616
LR chi2(2) = 6.38                                  Prob > chi2 = 0.0413
Log likelihood = -553.40712                       Pseudo R2 = 0.0057
------------------------------------------------------------------------------
insure | RRR Std. Err.    z     P>|z|    [95% Conf. Interval]
-------------+--------------------------------------------------
    Prepaid |        
       male | 1.611735  .3157844  2.44  0.015   1.09779   2.36629  
-------------+--------------------------------------------------
    Uninsure |        
       male | 1.584375  .5693021  1.28  0.200   .7834329   3.20416  
------------------------------------------------------------------------------
(Outcome insure==Indemnity is the comparison group)
```

Using `predict` after `mlogit`

- Can predict probability of each outcome
 - Need to give `k` variables
 - `predict p1-p3, p`
- Can predict probability of one particular outcome
 - Need to specify which with `outcome` option
 - `predict p2, p outcome(2)`
Using **predict after mlogit**: Example

. by male: sum p1-p3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>477</td>
<td>.506494</td>
<td>0</td>
<td>.506494</td>
<td>.506494</td>
</tr>
<tr>
<td>p2</td>
<td>477</td>
<td>.424242</td>
<td>0</td>
<td>.424242</td>
<td>.424242</td>
</tr>
<tr>
<td>p3</td>
<td>477</td>
<td>.069264</td>
<td>0</td>
<td>.069264</td>
<td>.069264</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>167</td>
<td>.389610</td>
<td>0</td>
<td>.389610</td>
<td>.389610</td>
</tr>
<tr>
<td>p2</td>
<td>167</td>
<td>.525974</td>
<td>0</td>
<td>.525974</td>
<td>.525974</td>
</tr>
<tr>
<td>p3</td>
<td>167</td>
<td>.084416</td>
<td>0</td>
<td>.084416</td>
<td>.084416</td>
</tr>
</tbody>
</table>

Using **lincom after mlogit**

- Can use **lincom** to
 - test if coefficients are different
 - calculate odds of being in a given outcome category
- Need to specify which outcome category we are interested in
- Normally, use the option eform to get odds ratios, rather than coefficients

- **lincom [Prepaid]male - [Uninsure]male**

| insure | Coef. Std. Err. | z | P>|z| | 95% Conf. Interval |
|--------|-----------------|---|-------|------------------|
| (1) | -0.017121 | 0.354499 | 0.06 | 0.961 | -0.6775487 .7117908 |

- **Ordinal Outcomes**

 - Can ignore ordering, use multinomial model
 - Can use a test for trend
 - Can use an ordered logistic regression model
Test for Trend

- χ^2-test tests for any differences between columns (or rows)
- Not very powerful against a linear change in proportions
- Can divide the χ^2-statistic into two parts: linear trend and variations around the linear trend.
- Test for trend more powerful against a trend
- Has no power to detect other differences
- Often used for ordinal predictors

Test for Trend: Example

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healed</td>
<td>12 (38%)</td>
<td>5 (16%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Improved</td>
<td>10 (31%)</td>
<td>8 (25%)</td>
<td>18 (28%)</td>
</tr>
<tr>
<td>No Change</td>
<td>4 (13%)</td>
<td>8 (25%)</td>
<td>12 (19%)</td>
</tr>
<tr>
<td>Worse</td>
<td>6 (19%)</td>
<td>11 (34%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Total</td>
<td>32 (100%)</td>
<td>32 (100%)</td>
<td>34 (100%)</td>
</tr>
</tbody>
</table>

Test for Trend: Results

```
. ptrendi 12 5 1 \ 10 8 2 \ 4 8 3 \ 6 11 4
```

<table>
<thead>
<tr>
<th>r nr _prop x</th>
<th>------------------------</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>12 5 0.706 1.00</td>
</tr>
<tr>
<td>2.</td>
<td>10 8 0.556 2.00</td>
</tr>
<tr>
<td>3.</td>
<td>4 8 0.333 3.00</td>
</tr>
<tr>
<td>4.</td>
<td>6 11 0.353 4.00</td>
</tr>
</tbody>
</table>

Trend analysis for proportions

Regression of p = r/(r+nr) on x:
Slope = -.12521, std. error = .0546, Z = 2.293
Overall chi2(3) = 5.909, pr>chi2 = 0.1161
Chi2(1) for trend = 5.205, pr>chi2 = 0.0218
Chi2(2) for departure = 0.650, pr>chi2 = 0.7226

Test for Trend: Caveat

- Test for trend only tests for a linear association between predictors and outcome.
- U-shaped or inverted U-shaped associations will not be detected.
Test for Trend in Stata

- Test for trend often used, should know about it
- Not implemented in base stata:
 - see http://www.stata.com/support/faqs/stat/trend.html
- Very rarely the best thing to do:
 - If trend variable is the outcome, use ordinal logistic regression
 - If trend variable is a predictor:
 - Fit both categorical & continuous, testparm categorical
 - If non-significant, use continuous variable
 - If significant, use categorical variables

Fitting an ordinal predictor

- . regress write oread i.oread
 note: 6.oread omitted because of collinearity

Source | SS df MS Number of obs = 200
-------------+------------------------------ F(5, 194) = 22.77
Model | 6612.82672 5 1322.56534 Prob > F = 0.0000
Residual | 11266.0483 194 58.0724138 R-squared = 0.3699
-------------+------------------------------ Adj R-squared = 0.3536
Total | 17878.875 199 89.843593 Root MSE = 7.6205
-------------+------------------------------
write | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
oread | 3.288889 1.606548 2.05 0.042 .1203466 6.457431
 | 2 | -6.669841 6.339542 -1.05 0.294 -19.17311 5.833432
 | 3 | -3.666385 4.761676 -0.77 0.442 -13.05768 5.724914
 | 4 | .361026 3.568089 0.10 0.919 -6.673124 7.401329
 | 5 | .4233918 2.825015 0.15 0.881 -5.148294 5.995078
 | 6 | 0 (omitted)
 | _cons | 42.71111 9.158732 4.66 0.000 24.64764 60.77458
-------------+--
. testparm i.oread
(1) 2.oread = 0
(2) 3.oread = 0
(3) 4.oread = 0
(4) 5.oread = 0
F(4, 194) = 1.36
Prob > F = 0.2697

Dose Response

- Don’t confuse trend with dose response
- All three models may have significant trend test
- Only first model has a dose-response effect
- Other models better fitted using categorical variables

<table>
<thead>
<tr>
<th>Genetic Model</th>
<th>Genotype</th>
<th>aa</th>
<th>aA</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive(dose-response)</td>
<td></td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Dominant</td>
<td></td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Recessive</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Ordinal Regression: Example

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healed</td>
<td>12 (38%)</td>
<td>5 (16%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Improved</td>
<td>10 (31%)</td>
<td>8 (25%)</td>
<td>18 (28%)</td>
</tr>
<tr>
<td>No Change</td>
<td>4 (13%)</td>
<td>8 (25%)</td>
<td>12 (19%)</td>
</tr>
<tr>
<td>Worse</td>
<td>6 (19%)</td>
<td>11 (34%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Total</td>
<td>32 (100%)</td>
<td>32 (100%)</td>
<td>34 (100%)</td>
</tr>
</tbody>
</table>

Ordered Polytomous Logistic Regression

\[\log \left(\frac{p_i}{1 - p_i} \right) = \alpha_i + \beta x \]

Where

- \(p_i \) = probability of being in a category up to and including the \(i^{th} \)
- \(\alpha_i \) = Log-odds of being in a category up to and including the \(i^{th} \) if \(x = 0 \)
- \(\beta \) = Log of the odds ratio for being in a category up to and including the \(i^{th} \) if \(x = 1 \), relative to \(x = 0 \)

- Dichotomise outcome to “Better” or “Worse”
- Can split the table in three places
- This produces 3 odds ratios
- Suppose these three odds ratios are estimates of the same quantity
- Odds of being in a worse group rather than a better one

Dichotomisation:

1. Healed + Improved vs. No Change + Worse
2. Healed vs. Improved + No Change
3. Healed vs. Improved + No Change + Worse

Odds Ratios:

\[OR_1 = \frac{(12+10+4) \times 11}{(5+8+6) \times 6} = 2.3 \]
\[OR_2 = \frac{(12+10) \times (8+11)}{(5+8) \times (4+6)} = 3.2 \]
\[OR_3 = \frac{(12) \times (8+11)}{5 \times (10+4+6)} = 3.2 \]
Ordinal Regression in Stata

- `ologit` fits ordinal regression models
- Option `or` gives odds ratios rather than coefficients
- Can compare likelihood to `mlogit` model to see if common odds ratio assumption is valid
- `predict` works as after `mlogit`

```
. ologit outcome treat, or
Iteration 3:  log likelihood =  -85.2492

Ordered logit estimates
Number of obs =  64
LR chi2(1)    =  5.49
Prob > chi2   =  0.0191
Log likelihood = -85.2492
Pseudo R2     =  0.0312
```

| outcome | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|------|-----|----------------------|
| treat | 2.932028 | 1.367427 | 2.31 | 0.021| 1.175407 - 7.31388 |

Ordinal Regression Caveats

- Assumption that same β fits all outcome categories should be tested
 - AIC, BIC or LR test compared to `mlogit` model
- User-written `gologit2` can also be used
 - Allows for some variables to satisfy proportional odds, others not
 - Option `autofit()` selects variables that violate proportional odds
- There are a variety of other, less widely used, ordinal regression models: see Sander Greenland: *Alternative Models for Ordinal Logistic Regression*, Statistics in Medicine, 1994, pp1665-1677.