Statistical Modelling with Stata: Binary Outcomes

Mark Lunt

Centre for Epidemiology Versus Arthritis
University of Manchester

01/12/2020
Cross-tabulation

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>Controls</td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
<td>b + d</td>
<td>a + b + c + d</td>
</tr>
</tbody>
</table>

- Simple random sample: fix \(a + b + c + d \)
- Exposure-based sampling: fix \(a + c \) and \(b + d \)
- Outcome-based sampling: fix \(a + b \) and \(c + d \)
The χ^2 Test

- Compares observed to expected numbers in each cell
- Expected under null hypothesis: no association
- Works for any of the sampling schemes
Measures of Association

Relative Risk = \frac{a}{a+c} \frac{b}{b+d} = \frac{a(b + d)}{b(a + c)}

Risk Difference = \frac{a}{a + c} - \frac{b}{b + d}

Odds Ratio = \frac{a}{c} \frac{d}{b} = \frac{ad}{cb}

- All obtained with cs disease exposure[, or]
- Only Odds ratio valid with outcome based sampling
Crosstabulation in stata

```
. cs back_p sex, or

<table>
<thead>
<tr>
<th>sex</th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>637</td>
<td>445</td>
<td>1082</td>
</tr>
<tr>
<td>Noncases</td>
<td>1694</td>
<td>1739</td>
<td>3433</td>
</tr>
<tr>
<td>Total</td>
<td>2331</td>
<td>2184</td>
<td>4515</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk</th>
<th>.2732733</th>
<th>.2037546</th>
<th>.2396456</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Point estimate</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk difference</td>
<td>.0695187</td>
<td>.044767 .0942704</td>
</tr>
<tr>
<td>Risk ratio</td>
<td>1.341188</td>
<td>1.206183 1.491304</td>
</tr>
<tr>
<td>Attr. frac. ex.</td>
<td>.2543926</td>
<td>.1709386 .329446</td>
</tr>
<tr>
<td>Attr. frac. pop</td>
<td>.1497672</td>
<td></td>
</tr>
<tr>
<td>Odds ratio</td>
<td>1.469486</td>
<td>1.27969 1.68743 (Cornfield)</td>
</tr>
</tbody>
</table>

chi2(1) = 29.91  Pr>chi2 = 0.0000
```
Limitations of Tabulation

- No continuous predictors
- Limited numbers of categorical predictors
Linear Regression and Binary Outcomes

- Can’t use linear regression with binary outcomes
 - Distribution is not normal
 - Limited range of sensible predicted values
- Changing parameter estimation to allow for non-normal distribution is straightforward
- Need to limit range of predicted values
Example: CHD and Age

A scatter plot showing the relationship between CHD and age.
Example: CHD by Age group
Example: CHD by Age - Linear Fit

- Proportion of subjects with CHD
- Fitted values
Generalized Linear Models

- Linear Model

\[Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon \]

\(\varepsilon \) is normally distributed

- Generalized Linear Model

\[g(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon \]

\(\varepsilon \) has a known distribution
Probabilities and Odds

<table>
<thead>
<tr>
<th>Probability</th>
<th>Odds (\Omega = \frac{p}{(1 - p)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 = 1/10</td>
<td>0.1/0.9 = 1:9 = 0.111</td>
</tr>
<tr>
<td>0.5 = 1/2</td>
<td>0.5/0.5 = 1:1 = 1</td>
</tr>
<tr>
<td>0.9 = 9/10</td>
<td>0.9/0.1 = 9:1 = 9</td>
</tr>
</tbody>
</table>
Advantage of the Odds Scale

- Just a different scale for measuring probabilities
- Any odds from 0 to ∞ corresponds to a probability
- Any log odds from $-\infty$ to ∞ corresponds to a probability
- Shape of curve commonly fits data
The binomial distribution

- Outcome can be either 0 or 1
- Has one parameter: the probability that the outcome is 1
- Assumes observations are independent
The Logistic Regression Equation

\[
\log \left(\frac{\hat{\pi}}{1 - \hat{\pi}} \right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p
\]

\[Y \sim \text{Binomial}(\hat{\pi})\]

- \(Y\) has a binomial distribution with parameter \(\pi\)
- \(\hat{\pi}\) is the predicted probability that \(Y = 1\)
When \(x_i \) increases by 1, \(\log (\hat{\pi} / (1 - \hat{\pi})) \) increases by \(\beta_i \)

Therefore \(\hat{\pi} / (1 - \hat{\pi}) \) increases by a factor \(e^{\beta_i} \)

For a dichotomous predictor, this is exactly the odds ratio we met earlier.

For a continuous predictor, the odds increase by a factor of \(e^{\beta_i} \) for each unit increase in the predictor.
Odds Ratios and Relative Risks

![Graph showing the relationship between proportion and odds. The graph depicts a curve for odds and a straight line for proportion.](image-url)
Logistic Regression in Stata

```stata
.logistic chd age
```

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|------------|-----------|------|------|---------------------|
| age | 1.117307 | .0268822 | 4.61 | 0.000| 1.065842 1.171257 |
Predict

- Lots of options for the `predict` command
- `p` gives the predicted probability for each subject
- `xb` gives the linear predictor (i.e. the log of the odds) for each subject
Plot of probability against age

- **Pr(chd)**: Probability of CHD
- **Proportion of subject in each ageband with CHD**
Plot of log-odds against age
Other Models for Binary Outcomes

- Can use any function that maps \((-\infty, \infty)\) to \((0, 1)\)
 - Probit Model
 - Complementary log-log
- Parameters lack interpretation
The Log-Binomial Model

- Models $\log(\pi)$ rather than $\log(\frac{\pi}{1 - \pi})$
- Gives relative risk rather than odds ratio
- Can produce predicted values greater than 1
- May not fit the data as well
- **Stata command:** `glm varlist, family(binomial) link(log)`
- If association between $\log(\pi)$ and predictor non-linear, lose simple interpretation.
Log-binomial model example
Logistic Regression Diagnostics

- Goodness of Fit
- Influential Observations
- Poorly fitted Observations
Problems with R^2

- Multiple definitions
- Lack of interpretability
- Low values
 - Can predict $P(Y = 1)$ perfectly, not predict Y well at all if $P(Y = 1) \approx 0.5$.
Hosmer-Lemeshow test

- Very like χ^2 test
- Divide subjects into groups
- Compare observed and expected numbers in each group
- Want to see a non-significant result
- Command used is `estat gof`
Hosmer-Lemeshow test example

. estat gof, group(5) table

Logistic model for chd, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

+--+
| Group | Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
1	0.1690	2	2.1	18	17.9	20
2	0.3183	5	4.9	16	16.1	21
3	0.5037	9	8.7	12	12.3	21
4	0.7336	15	15.1	8	7.9	23
5	0.9125	12	12.2	3	2.8	15
+--+

number of observations = 100
number of groups = 5
Hosmer-Lemeshow chi2(3) = 0.05
Prob > chi2 = 0.9973
Sensitivity and Specificity

Cross-tabulation

<table>
<thead>
<tr>
<th></th>
<th>Test +ve</th>
<th>Test -ve</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>Controls</td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
<td>b + d</td>
<td>a + b + c + d</td>
</tr>
</tbody>
</table>

- **Sensitivity:**
 - Probability that a case classified as positive
 - \(\frac{a}{a + b} \)

- **Specificity:**
 - Probability that a non-case classified as negative
 - \(\frac{d}{c + d} \)
Sensitivity and Specificity in Logistic Regression

- Sensitivity and specificity can only be used with a single dichotomous classification.
- Logistic regression gives a probability, not a classification.
- Can define your own threshold for use with logistic regression.
- Commonly choose 50% probability of being a case.
- Can choose any probability: sensitivity and specificity will vary.
- Why not try every possible threshold and compare results: ROC curve.
ROC Curves

- Shows how sensitivity varies with changing specificity
- Larger area under the curve = better
- Maximum = 1
- Tossing a coin would give 0.5
- Command used is `lroc`
ROC Example

Area under ROC curve = 0.7999
Influential Observations

- Residuals less useful in logistic regression than linear
- Can only take the values $1 - \hat{\pi}$ or $-\hat{\pi}$.
- Leverage does not translate to logistic regression model
- $\Delta \hat{\beta}_i$ measures effect of i^{th} observation on parameters
- Obtained from `dbeta` option to `predict` command
- Plot against $\hat{\pi}$ to reveal influential observations
Plot of $\Delta \hat{\beta}_i$ against $\hat{\pi}$
. logistic chd age if dbeta < 0.2

Logistic regression

Log likelihood = -50.863658

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|-----|-----|---------------------|
| age | 1.130329 | 0.0293066 | 4.73| 0.000| 1.074324 1.189254 |
Poorly fitted observations

- Can be identified by residuals
 - Deviance residuals: `predict varname, ddeviance`
 - χ^2 residuals: `predict varname, dx2`
- Not influential: omitting them will not change conclusions
- May need to explain fit is poor in particular area
- Plot residuals against predicted probability, look for outliers
Separation

- Need at least one case and one control in each subgroup
- If you have lots of subgroups, this may not be true
- In which case, log(OR) for that group is \(-\infty\) or \(\infty\)
- Stata will drop all subjects from that group (unless you use the option `asis`)
- Not a problem with continuous predictors