Statistical Modelling in Stata 5: Linear Models

Mark Lunt

Centre for Epidemiology Versus Arthritis
University of Manchester

29/10/2019
Structure

This Week
- What is a linear model?
- How good is my model?
- Does a linear model fit this data?

Next Week
- Categorical Variables
- Interactions
- Confounding
- Other Considerations
 - Variable Selection
 - Polynomial Regression
All models are wrong, but some are useful.

(G.E.P. Box)

A model should be as simple as possible, but no simpler. (attr. Albert Einstein)
What is a Linear Model?

- Describes the relationship between variables
- Assumes that relationship can be described by straight lines
- Tells you the expected value of an *outcome* or *y* variable, given the values of one or more *predictor* or *x* variables
Variable Names

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Predictor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>Independent variables</td>
</tr>
<tr>
<td>Y-variable</td>
<td>x-variables</td>
</tr>
<tr>
<td>Response variable</td>
<td>Regressors</td>
</tr>
<tr>
<td>Output variable</td>
<td>Input variables</td>
</tr>
<tr>
<td></td>
<td>Explanatory variables</td>
</tr>
<tr>
<td></td>
<td>Carriers</td>
</tr>
<tr>
<td></td>
<td>Covariates</td>
</tr>
</tbody>
</table>
The Equation of a Linear Model

The equation of a linear model, with outcome Y and predictors x_1, \ldots, x_p

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$$

- $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$ is the Linear Predictor
- $\hat{Y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$ is the predictable part of Y.
- ε is the error term, the unpredictable part of Y.
- We assume that ε is normally distributed with mean 0 and variance σ^2.
Linear Model Assumptions

- Mean of $Y | x$ is a linear function of x
- Variables $Y_1, Y_2 \ldots Y_n$ are independent.
- The variance of $Y | x$ is constant.
- Distribution of $Y | x$ is normal.
Parameter Interpretation

- β_1 is the amount by which Y increases if x_1 increases by 1, and none of the other x variables change.
- β_0 is the value of Y when all of the x variables are equal to 0.
Estimating Parameters

- β_j in the previous equation are referred to as parameters or coefficients.
- Don’t use the expression “beta coefficients”: it is ambiguous.
- We need to obtain estimates of them from the data we have collected.
- Estimates normally given roman letters b_0, b_1, \ldots, b_n.
- Values given to b_j are those which minimise $\sum(Y - \hat{Y})^2$: hence “Least squares estimates”
Inference on Parameters

- If assumptions hold, sampling distribution of b_j is normal with mean β_j and variance $\sigma^2/n s^2_\chi$ (for sufficiently large n), where:
 - σ^2 is the variance of the error terms ε,
 - s^2_χ is the variance of χ_j and
 - n is the number of observations

- Can perform t-tests of hypotheses about β_j (e.g. $\beta_j = 0$).
- Can also produce a confidence interval for β_j.
- Inference in β_0 (intercept) is usually not interesting.
Inference on the Predicted Value

- \[Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon \]
- Predicted Value \(\hat{Y} = b_0 + b_1 x_1 + \ldots + b_p x_p \)
- Observed values will differ from predicted values because of
 - Random error (\(\varepsilon \))
 - Uncertainty about parameters \(\beta_j \).
- We can calculate a 95% prediction interval, within which we would expect 95% of observations to lie.
- Reference Range for \(Y \)
Prediction Interval
Inference on the Mean

- The *mean* value of Y at a given value of x does not depend on ε.
- The standard error of \hat{Y} is called the standard error of the prediction (by stata).
- We can calculate a 95% confidence interval for \hat{Y}.
- This can be thought of as a confidence region for the regression line.
Confidence Interval

The linear Model
Testing assumptions

Introduction
Parameters
Prediction
ANOVA
Stata commands for linear models
Analysis of Variance (ANOVA)

- Variance of Y is $\frac{\sum(Y - \bar{Y})^2}{n-1} = \frac{\sum(Y - \hat{Y})^2 + \sum(\hat{Y} - \bar{Y})^2}{n-1}$

- $SS_{reg} = \sum(\hat{Y} - \bar{Y})^2$ (regression sum of squares)

- $SS_{res} = \sum(Y - \hat{Y})^2$ (residual sum of squares)

- Each part has associated degrees of freedom: p d.f for the regression, $n - p - 1$ for the residual.

- The mean square $MS = SS/df$.

- MS_{reg} should be similar to MS_{res} if no association between Y and x

- $F = \frac{MS_{reg}}{MS_{res}}$ gives a measure of the strength of the association between Y and x.
Analysis of Variance (ANOVA)

- Variance of Y is \[\frac{\sum (Y - \bar{Y})^2}{n-1} = \frac{\sum (Y - \hat{Y})^2 + \sum (\hat{Y} - \bar{Y})^2}{n-1} \]
- $SS_{reg} = \sum (\hat{Y} - \bar{Y})^2$ (regression sum of squares)
- $SS_{res} = \sum (Y - \hat{Y})^2$ (residual sum of squares)
- Each part has associated degrees of freedom: p d.f for the regression, $n - p - 1$ for the residual.
- The mean square $MS = SS/df$.
- MS_{reg} should be similar to MS_{res} if no association between Y and x.
- $F = \frac{MS_{reg}}{MS_{res}}$ gives a measure of the strength of the association between Y and x.
Analysis of Variance (ANOVA)

- Variance of Y is \[\frac{\sum (Y - \bar{Y})^2}{n-1} = \frac{\sum (Y - \hat{Y})^2 + \sum (\hat{Y} - \bar{Y})^2}{n-1} \]

- $SS_{reg} = \sum \left(\hat{Y} - \bar{Y} \right)^2$ (regression sum of squares)

- $SS_{res} = \sum \left(Y - \hat{Y} \right)^2$ (residual sum of squares)

- Each part has associated degrees of freedom: p d.f for the regression, $n - p - 1$ for the residual.

- The mean square $MS = SS/df$.

- MS_{reg} should be similar to MS_{res} if no association between Y and x.

- $F = \frac{MS_{reg}}{MS_{res}}$ gives a measure of the strength of the association between Y and x.
Analysis of Variance (ANOVA)

- Variance of Y is $\frac{\sum(Y - \bar{Y})^2}{n-1} = \frac{\sum(Y - \hat{Y})^2 + \sum(\hat{Y} - \bar{Y})^2}{n-1}$

- $SS_{reg} = \sum (\hat{Y} - \bar{Y})^2$ (regression sum of squares)

- $SS_{res} = \sum (Y - \hat{Y})^2$ (residual sum of squares)

- Each part has associated degrees of freedom: p d.f for the regression, $n - p - 1$ for the residual.

- The mean square $MS = SS/df$.

- MS_{reg} should be similar to MS_{res} if no association between Y and x

- $F = \frac{MS_{reg}}{MS_{res}}$ gives a measure of the strength of the association between Y and x.
Analysis of Variance (ANOVA)

- Variance of Y is \[\frac{\sum(y - \bar{y})^2}{n-1} = \frac{\sum(y - \hat{y})^2 + \sum(\hat{y} - \bar{y})^2}{n-1} \]
- \(SS_{reg} = \sum (\hat{y} - \bar{y})^2 \) (regression sum of squares)
- \(SS_{res} = \sum (y - \hat{y})^2 \) (residual sum of squares)
- Each part has associated degrees of freedom: \(p \) d.f for the regression, \(n - p - 1 \) for the residual.
- The mean square \(MS = SS/df \).
- \(MS_{reg} \) should be similar to \(MS_{res} \) if no association between Y and x
- \(F = \frac{MS_{reg}}{MS_{res}} \) gives a measure of the strength of the association between Y and x.
Analysis of Variance (ANOVA)

- Variance of Y is $\frac{\sum(Y-\bar{Y})^2}{n-1} = \frac{\sum(Y-\hat{Y})^2 + \sum(\hat{Y}-\bar{Y})^2}{n-1}$

- $SS_{reg} = \sum(\hat{Y} - \bar{Y})^2$ (regression sum of squares)

- $SS_{res} = \sum(Y - \hat{Y})^2$ (residual sum of squares)

- Each part has associated degrees of freedom: p d.f for the regression, $n - p - 1$ for the residual.

- The mean square $MS = SS/df$.

- MS_{reg} should be similar to MS_{res} if no association between Y and x.

- $F = \frac{MS_{reg}}{MS_{res}}$ gives a measure of the strength of the association between Y and x.
Analysis of Variance (ANOVA)

- Variance of Y is $\frac{\sum(Y-\bar{Y})^2}{n-1} = \frac{\sum(Y-\hat{Y})^2 + \sum(\hat{Y}-\bar{Y})^2}{n-1}$
- $SS_{reg} = \sum(\hat{Y} - \bar{Y})^2$ (regression sum of squares)
- $SS_{res} = \sum(Y - \hat{Y})^2$ (residual sum of squares)
- Each part has associated degrees of freedom: p d.f for the regression, $n - p - 1$ for the residual.
- The mean square $MS = SS/df$.
- MS_{reg} should be similar to MS_{res} if no association between Y and x
- $F = \frac{MS_{reg}}{MS_{res}}$ gives a measure of the strength of the association between Y and x.
ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>p</td>
<td>SS_{reg}</td>
<td>$MS_{reg} = \frac{SS_{reg}}{p}$</td>
<td>$\frac{MS_{reg}}{MS_{res}}$</td>
</tr>
<tr>
<td>Residual</td>
<td>n-p-1</td>
<td>SS_{res}</td>
<td>$MS_{res} = \frac{SS_{res}}{(n - p - 1)}$</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n-1</td>
<td>SS_{tot}</td>
<td>$MS_{tot} = \frac{SS_{tot}}{(n - 1)}$</td>
<td></td>
</tr>
</tbody>
</table>
Goodness of Fit

- Predictive value of a model depends on how much of the variance can be explained.
- R^2 is the proportion of the variance explained by the model.
- $R^2 = \frac{SS_{reg}}{SS_{tot}}$
- R^2 always increases when a predictor variable is added.
- Adjusted R^2 is better for comparing models.
The basic command for linear regression is
\texttt{regress \textit{y-var} \textit{x-vars}}

Can use \texttt{by} and \texttt{if} to select subgroups.

The command \texttt{predict} can produce
- predicted values
- standard errors
- residuals
- etc.
Stata Output 1: ANOVA Table

- **F()**: F Statistic for the Hypothesis $\beta_j = 0$ for all j
- **Prob > F**: p-value for above hypothesis test
- **R-squared**: Proportion of variance explained by regression
 \[R^2 = \frac{SS_{Model}}{SS_{Total}} \]
- **Adj R-squared**: \(\frac{(n-1)R^2 - p}{n-p-1} \)
- **Root MSE**: \(\sqrt{MS_{Residual}} = \hat{\sigma} \)
Stata Output 1: Example

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>27.5100011</td>
<td>1</td>
<td>27.5100011</td>
<td>F(1, 9)</td>
<td>17.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>13.7626904</td>
<td>9</td>
<td>1.52918783</td>
<td>Prob > F</td>
<td>0.0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>41.2726916</td>
<td>10</td>
<td>4.12726916</td>
<td>R-squared</td>
<td>0.6665</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared</td>
<td>0.6295</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE</td>
<td>1.2366</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of obs = 11
Stata Output 2: Coefficients

Coef. Estimate of parameter β for the variable in the left-hand column. (β_0 is labelled “*_cons*” for “constant”)

Std. Err. Standard error of b.

t The value of $\frac{b-0}{s.e.(b)}$, to test the hypothesis that $\beta = 0$.

$P > |t|$ P-value resulting from the above hypothesis test.

95% Conf. Interval A 95% confidence interval for β.

Stata Output 2: Example

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----|---------|-----------|-------|-----|---------------------|
| x | 0.5000909 | 0.1179055 | 4.241 | 0.002 | 0.2333701 - 0.7668117 |
| _cons | 3.000091 | 1.124747 | 2.667 | 0.026 | 0.4557369 - 5.544445 |
Is a linear model appropriate?

- Does it provide adequate predictions?
- Do my data satisfy the assumptions of the linear model?
- Are there any individual points having an inordinate influence on the model?
The linear Model
Testing assumptions

Constant Variance
Linearity
Influential points
Normality

Anscombe’s Data

Y1 vs. x1
Y2 vs. x1
Y3 vs. x1
Y4 vs. x2
Linear Model Assumptions

- Linear models are based on 4 assumptions
 - Variables $Y_1, Y_2 \ldots Y_n$ are independent.
 - The variance of $Y_i \mid x$ is constant.
 - Mean of Y_i is a linear function of x_i.
 - Distribution of $Y_i \mid x$ is normal.

- If any of these are incorrect, inference from regression model is unreliable

- We may know about assumptions from experimental design (e.g. repeated measures on an individual are unlikely to be independent).

- Should test all 4 assumptions.
Distribution of Residuals

- Error term $\varepsilon_i = Y_i - \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi}$
- Residual term

 $$e_i = Y_i - b_0 + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_p x_{pi} = Y_i - \hat{Y}_i$$

 - Nearly but not quite the same, since our estimates of β_j are imperfect.
 - Predicted values vary more at extremes of x-range (points have greater leverage)
 - Hence residuals vary less at extremes of the x-range
 - If error terms have constant variance, residuals don’t.
Standardised Residuals

- Variation in variance of residuals as x changes is predictable.
- Can therefore correct for it.
- *Standardised Residuals* have mean 0 and standard deviation 1.
- Can use standardised residuals to test assumptions of linear model.

- `predict Yhat, xb` will generate predicted values.
- `predict sres, rstand` will generate standardised residuals.
- `scatter sres Yhat` will produce a plot of the standardised residuals against the fitted values.
Testing Constant Variance:

- Residuals should be independent of predicted values
- There should be no pattern in this plot
- Common patterns
 - Spread of residuals increases with fitted values
 - This is called heteroskedasticity
 - May be removed by transforming Y
 - Can be formally tested for with `hettest`
 - There is curvature
 - The association between x and Y variables is not linear
 - May need to transform Y or x
 - Alternatively, fit x^2, x^3 etc. terms
 - Can be formally tested for with `ovtest`
The linear Model
Testing assumptions

Residual vs Fitted Value Plot Examples

(a) Non-constant variance
(b) Non-linear association
Testing Linearity: Partial Residual Plots

- Partial residual $p_j = e + b_j x_j = Y - \beta_0 - \sum_{l \neq j} b_l x_l$
- Formed by subtracting that part of the predicted value that does not depend on x_j from the observed value of Y.
- Plot of p_j against x_j shows the association between Y and x_j after adjusting for the other predictors.
- Can be obtained from stata by typing `cprplot xvar` after performing a regression.
The linear Model
Testing assumptions

Constant Variance
Linearity
Influential points
Normality

Example Partial Residual Plot

e(Y2 | X,x1) + b*x1

Residuals Linear prediction
4 14
.099091
7
Points which have a marked effect on the regression equation are called *influential* points.

Points with unusual x-values are said to have high leverage.

Points with high leverage may or may not be influential, depending on their Y values.

Plot of *studentised residual* (residual from regression excluding that point) against leverage can show influential points.
Statistics to Identify Influential Points

DFBETA Measures influence of individual point on a single coefficient β_j.

DFFITS Measures influence of an individual point on its predicted value.

Cook’s Distance Measured the influence of an individual point on all predicted values.

- All can be produced by `predict`.
- There are suggested cut-offs to determine influential observations.
- May be better to simply look for outliers.
A point with normal x-values and abnormal Y-value may be influential.

Robust regression can be used in this case.

- Observations repeatedly reweighted, weight decreases as magnitude of residual increases

Methods robust to x-outliers are very computationally intensive.
Robust Regression

The linear Model
Testing assumptions

Constant Variance
Linearity
Influential points
Normality

Robust Regression

Y3
x1

Robust Regression
LS Regression

5 10 15
5
10
15
Testing Normality

- Standardised residuals should follow a normal distribution.
- Can test formally with `swilk varname`.
- Can test graphically with `qnorm varname`.
The linear Model
Testing assumptions

Normal Plot: Example

- Standardised Residuals vs Inverse Normal
- Standardised Residuals vs Inverse Normal

- Standardised Residuals vs Inverse Normal
- Standardised Residuals vs Inverse Normal
Can test assumptions both formally and informally
Both approaches have advantages and disadvantages
- Tests are always significant in sufficiently large samples.
- Differences may be slight and unimportant.
- Differences may be marked but non-significant in small samples.
Best to use both