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1 Introduction

Very often in observational studies of treatment effects, we have missing data
for some of the variables that we wish to balance between the treated and
untreated arms of the study. This leaves us with a number of options:

1. Omit the variable with the missing data from the propensity model

2. Omit the individuals with the missing data from the analysis

3. Reweight the individuals with complete data to more nearly approxi-
mate the distribution in all subjects

4. Impute the missing data

Option 1 is likely to give a biased estimate of the effect of treatment,
since the treated and untreated subjects will not be balanced for the variable
with missing values. Option 2 is also likely to produce a biased answer [?], as
well as increasing the width of the confidence interval around the answer by
reducing the number of subjects included in the analysis. Therefore, options
3 and 4 are preferable: this document applies to option 4.

Imputation by Chained Equations (ICE: see [?]) is very useful for per-
forming imputation when you have a mixture of continuous and categorical
variables. It can impute variables of various types (continuous, categorical,
ordinal etc) using different regression methods, and uses an iterative proce-
dure to allow for multiple missing values. For example, if you are imputing
HAQ from DAS and disease duration, you may have subjects with both HAQ
and DAS missing. You would then need to impute DAS, and use the imputed
DAS to impute the HAQ.

The imputations produced by mi impute chained take into account the
uncertainty in the predictions. That is, random noise will be added to the
regression coefficients to allow for sampling error, and an error term will be
added to allow for the population variation. In this way, both the mean and
variance of the imputed values ought to be correct, as well as the correlations
between variables.

I will illustrate all of these procedures using an analysis of data from the
BSRBR. We aim to perform a survival analysis of death, with the following
variables regarded as confounders:
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age Age
disdur Disease duration
pgen Gender
haq HAQ Score
dascore Disease Activity Score (DAS)
dm_grp Number of previous DMARDs

(Disease Modifying Anti-Rheumatic Drugs)
I strongly recommend that you work through obtain the dataset that I

used for this example, and work through the commands yourself (the dataset
can be obtained by typing

use http://personalpages.manchester.ac.uk/staff/mark.lunt/mi_example.dta

in a Stata command window. The best way to really understand how this
works is to do it yourself. If you wish to work through this example, I suggest
you start by entering the following commands:

mkdir P:/mi_guide

cd P:/mi_guide

set more off

set memory 128m

log using P:/mi_guide/mi_guide.log, text replace

Now you will have somewhere to store the results of your analysis.

2 Installing Packages

We are going to use one user-written add-on to Stata, nscore, which will
tranform non-normal continuous data to normality and back. You will need
to install this yourself: type

net from http://personalpages.manchester.ac.uk/staff/mark.lunt

then click on the blue nscore and finally click here to install.

3 How big is the problem ?

First, we need to see how much missing data we have. We can do this with
the misstable command:
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misstable summarize age disdur haq dascore pgen dm_grp

misstable patterns age disdur haq dascore pgen dm_grp

The output of these commands is shown in Listing 1.
Gender data is complete, and age is almost complete (9 missing values).

About 11% of subjects have only missing HAQ scores, with substantially
fewer having other patterns of missing data. Most subjects with missing
data have only one or two variables missing, although a couple have 4 or 5.

We will want to look at the distributions of our imputed variables and
compare them to the observed variables later. To do this, we set up some
flags to identify observations in which particular variables are missing.

foreach var of varlist age disdur haq dascore pgen dm_grp {

gen ‘var’_miss = ‘var’ == .

}

4 First steps in imputation

Now we can start to look at how the imputation works. Using the commands
built into Stata is a little different to using ice, which was how multiple
imputation was done in Stata prior to version 11. First you need to set the
data as multiple imputation data with the command

mi set mlong

. There are four styles of storing data for multiple imputation, and which
one is best depends on the size of your dataset, how many variables have
missing data and how many observations have missing data. The styles are

wide For each variable with missing data, Stata creates m new variables to
contain the imputed values.

flong Stata creates m copies of the entire dataset in a single dataset, replac-
ing missing values with imputed values

flongsep Stata creates m copies of the entire dataset in m separate datasets,
replacing missing values with imputed values

mlong Like flong, but Stata only creates m new copies of observations with
missing data: complete observations are only stored once.
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Listing 1 Patterns of missing data

. misstable summarize age disdur haq dascore pgen dm_grp, all

Obs<.

+------------------------------

| | Unique

Variable | Obs=. Obs>. Obs<. | values Min Max

-------------+--------------------------------+------------------------------

age | 9 13,615 | 75 16 90

disdur | 139 13,485 | 63 0 65

haq | 1,770 11,854 | 52 0 3

dascore | 404 13,220 | >500 0 10

pgen | 13,624 | 2 0 1

dm_grp | 190 13,434 | 6 1 6

-----------------------------------------------------------------------------

. misstable patterns age disdur haq dascore pgen dm_grp

Missing-value patterns

(1 means complete)

| Pattern

Percent | 1 2 3 4 5

------------+------------------

84% | 1 1 1 1 1

|

11 | 1 1 1 1 0

2 | 1 1 1 0 1

1 | 1 1 1 0 0

<1 | 1 1 0 1 1

<1 | 1 0 1 1 1

<1 | 1 1 0 1 0

<1 | 1 0 1 1 0

<1 | 1 1 0 0 1

<1 | 1 1 0 0 0

<1 | 0 1 1 1 1

<1 | 1 0 0 0 0

<1 | 1 0 0 1 0

<1 | 0 0 0 0 0

<1 | 0 1 0 1 0

<1 | 0 1 1 1 0

<1 | 1 0 0 0 1

<1 | 1 0 0 1 1

<1 | 1 0 1 0 0

<1 | 1 0 1 0 1

------------+------------------

100% |

Variables are (1) age (2) disdur (3) dm_grp (4) dascore (5) haq6



Style mlong is best if most observations are complete, and just a few have
missing data, but most variables have some missing data. Style wide would
be better if there are few variables with missing data, but lots of observations.
Style flong rarely offers any advantage over mlong, and requires more space,
so use mlong instead1. Style flongsep comes into its own when your dataset
is so large that it will not fit into memory using any of the other styles.
However, it can be a bit tricky to use, so avoid it if you can. If you can’t,
make sure to read the section “Advice for using flongsep” in the Multiple
Imputation Manual first.

Next, we register the variables that we need to impute data into with the
command

mi register imputed age haq dascore disdur dm_grp

mi register regular pgen

This tells Stata which variables require imputation (age haq dascore disdur
dm grp) and which do not (pgen). Variables that have been registered as
imputed can have different values in different imputations, whereas it would
usually be a mistake to have other variables differing between imputations,
and Stata would warn you.

Now we can start to impute the data. We will use linear regression
to impute age, HAQ, DAS and disease duration, and ordinal regression to
impute dm grp. Since this is the first time that we have imputed any data,
we need to to use the option add() to say how many imputations we need:
we will create 20.

Note that we can include pgen as a predictor in our imputations without
needing to impute any values for it (since there are none). The most im-
portant thing to remember with imputation is that your imputation model
should be as rich as possible: any variables (or terms, such as interactions)
that will be included in your analysis should be included in the imputation
model. In particular, the outcome variable must be included, since if it is not
then you are assuming that there is no association between the outcome and
the predictors in the imputed data, and hence are diluting any association
that might exist in the observed data.

As you can see, Stata will impute each of the missing variables from all of
the other 5 variables. Before running the imputations, I have set the random
number seed to 999, so that the same random numbers are always produced

1Ironically, it may be better than mlong for IPTW analysis, which we will be doing
shortly, although I’m not aware of any evidence either way yet.
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Listing 2 Initial Imputation

. preserve

. mi impute chained (regress) disdur dascore age haq ///

(ologit) dm_grp = pgen, add(20)

note: variable pgen contains no soft missing (.) values; imputing nothing

Conditional models:

age: regress age i.pgen disdur i.dm_grp dascore haq

disdur: regress disdur i.pgen age i.dm_grp dascore haq

dm_grp: ologit dm_grp i.pgen age disdur dascore haq

dascore: regress dascore i.pgen age disdur i.dm_grp haq

haq: regress haq i.pgen age disdur i.dm_grp dascore

Performing chained iterations ...

Multivariate imputation Imputations = 5

Chained equations added = 5

Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50

burn-in = 10

disdur: linear regression

dascore: linear regression

age: linear regression

haq: linear regression

dm_grp: ordered logistic regression

pgen: logistic regression

------------------------------------------------------------------

| Observations per m

|----------------------------------------------

Variable | Complete Incomplete Imputed | Total

-------------------+-----------------------------------+----------

disdur | 13485 139 139 | 13624

dascore | 13220 404 404 | 13624

age | 13615 9 9 | 13624

haq | 11854 1770 1770 | 13624

dm_grp | 13434 190 190 | 13624

pgen | 13624 0 0 | 13624

------------------------------------------------------------------

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)
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and the analysis is reproducible. If you copy the commands in this document,
your output should be identical to mine.

Listing 3 Producing histograms of imputed data: first attempt

tw histogram haq if haq_miss == 0, width(0.125) color(gs4) || ///

histogram haq if haq_miss == 1, gap(50) color(gs12) ///

width(0.125) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export haq112.eps, replace

tw histogram disdur if disdur_miss == 0, width(2) color(gs4) || ///

histogram disdur if disdur_miss == 1, gap(50) color(gs12) ///

width(2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export disdur112.eps, replace

tw histogram age if age_miss == 0, width(2) color(gs4) || ///

histogram age if age_miss == 1, gap(50) color(gs12) ///

width(2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export age112.eps, replace

tw histogram dascore if dascore_miss == 0 , width(0.2) color(gs4) || ///

histogram dascore if dascore_miss == 1, gap(50) color(gs12) ///

width(0.2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export dascore112.eps, replace

Now we can look at the imputed data, starting with continuous variables,
histograms of which are shown in Figure 1. For the HAQ score, some of the
imputed values are impossible: a HAQ score lies between 0 and 3, and in fact
can only take certain values in this range. Imputing data with the appropriate
mean and variance leads to impossible values. A similar problem exists for
disdur: values below 0 are impossible (they correspond to negative disease
durations i.e. subjects who will develop their disease in the future), and yet
they are imputed. The DAS has fewer problems: it is possible that out-of-
range DAS values are imputed, but it does not seem to have happened here.
Only 9 values of age needed to be imputed, and they are all reasonable.
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Figure 1: Distribution of imputed and observed values: first attempt

5 Imputation of non-normal distributions

There is some debate about whether or not the impossible values for HAQ
and disease duration are a problem: for a discussion see [?].

One way around the problem of impossible values is to use the command
nscore. This will transform the variables to normality, so that they can be
imputed. Then invnscore can be used to convert back from the normally
distributed imputed variable to the (bizarre) distributions of the original
variables. The command invnscore guarantees that imputed values cannot
lie outside the observed data range. The commands needed to do this given
in Listing 42.

It is obvious from Figure 2 that the distributions of the imputed data

2The figures dascore3a.eps and dascore3b.eps produced by this listing will only be
needed for Figure 3 later, but since the imputed data will be changed by then, I have
generated them now.
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Listing 4 Producing histograms of imputed data: second attempt

restore

preserve

nscore age disdur haq dascore, gen(nscore)

mi register imputed nscore1-nscore4

mi impute chained (regress) nscore1-nscore4 (ologit) dm_grp ///

= pgen, add(5)

invnscore age disdur haq dascore

tw histogram haq if haq_miss == 0, width(0.125) color(gs4) || ///

histogram haq if haq_miss == 1, gap(50) color(gs12) ///

width(0.125) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export haq212.eps, replace

tw histogram disdur if disdur_miss == 0, width(2) color(gs4) || ///

histogram disdur if disdur_miss == 1, gap(50) color(gs12) ///

width(2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export disdur212.eps, replace

tw histogram age if age_miss == 0, width(2) color(gs4) || ///

histogram age if age_miss == 1, gap(50) color(gs12) ///

width(2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export age212.eps, replace

tw histogram dascore if dascore_miss == 0 , width(0.2) color(gs4) || ///

histogram dascore if dascore_miss == 1, gap(50) color(gs12) ///

width(0.2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export dascore212.eps, replace

tw histogram dascore if dascore_miss == 0 & treated == 0, ///

width(0.2) color(gs4) || ///

histogram dascore if dascore_miss == 1 & treated == 0, ///

gap(50) color(gs12) ///

width(0.2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export dascore3a12.eps, replace

tw histogram dascore if dascore_miss == 0 & treated == 1, ///

width(0.2) color(gs4) || ///

histogram dascore if dascore_miss == 1 & treated == 1, ///

gap(50) color(gs12) ///

width(0.2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export dascore3b12.eps, replace11
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Figure 2: Distribution of imputed and observed values: second attempt

are much more similar to the distribution of the observed data now, and no
longer follow a normal distribution.

6 Imputing Treated and Untreated Separately

Although the distributions of imputed values look reasonable now, there
is still problem. The same imputation equation is used to impute data in
treated and untreated subjects, despite the big differences in these variables
between the two groups. We could simply add treatment as a predictor to all
of the imputation equations, but there are still differences in the associations
between (for example) age and DAS in the treated and untreated that are
not catered for in this way. Fitting interactions between treatment and all of
the predictors is possible, but it would be easier to perform the imputations
completely separately in the treated and control arms. The way to do this is
illustrated in Listing 5.
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Listing 5 Imputing in treated and untreated separately

restore

preserve

nscore age disdur haq dascore, gen(nscore)

mi register imputed nscore1-nscore4

mi impute chained (regress) nscore1-nscore4 (ologit) dm_grp ///

= pgen, add(20) by(treated)

invnscore age disdur haq dascore

tw histogram dascore if dascore_miss == 0 & treated == 0, ///

width(0.2) color(gs4) || ///

histogram dascore if dascore_miss == 1 & treated == 0, ///

gap(50) color(gs12) ///

width(0.2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export dascore3c12.eps, replace

tw histogram dascore if dascore_miss == 0 & treated == 1, ///

width(0.2) color(gs4) || ///

histogram dascore if dascore_miss == 1 & treated == 1, ///

gap(50) color(gs12) ///

width(0.2) legend(label(1 "Observed Values") ///

label(2 "Imputed Values"))

graph export dascore3d12.eps, replace
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Figure 3: Distribution of imputed and observed values of DAS: common &
separate imputations

Figure 3 shows the effect of imputing in the treated and untreated sep-
arately. In the top panel, the imputation was performed in the treated and
untreated as a single group. The distribution of observed DAS scores dif-
fer greatly between treated and untreated subjects, but the distribution of
imputed DAS scores are similar in the treated and untreated, but unlike
the observed values for the untreated subjects. In the lower panel, the im-
putation was performed in the treated and untreated separately. Now the
distribution of imputed values in the treated and untreated subjects is similar
to the observed values in that group of subjects.

(Bear in mind that the distributions of observed and imputed data do
not need to be the same. For example, it may be that older subjects are less
likely to complete a HAQ. Then the missing HAQs are likely to be higher
than the observed HAQs. However, the associations between missingness
and each of the variables is only minor in this instance, so the distributions
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of imputed and observed data should be similar.)

7 Using the imputed data

Having generated a set of imputations, you will want to analyse them. This
is not straightforward: you need to analyse each imputed dataset separately,
then combine the separate estimates in a particular way (following “Rubin’s
Rules”[?]) to obtain your final estimate. Fortunately, Stata will do that for
you without you needing to know what is going on. You simply precede
whichever regression command you wanted use with mi estimate: (pro-
vided there are at least 2 imputations, which is why we used m(5) in the mi

impute command earlier). So, to obtain a propensity score from our imputed
data, we would enter the command

drop _merge

xi: mi estimate, saving(propensity): logistic treated age disdur haq dascore ///

i.pgen i.dm_grp

Note that the xi command has to come before the mi estimate com-
mand. Also note that we have to save the estimation results (saving(propensity)
if we want to use them later for prediction.

There are two ways of predicting after issuing an mi estimate command.
The one that you will usually use is mi predict (or mi predictnl. However,
this does not offer all of the options that are usually available after a regres-
sion command, since Rubin’s rules are used to combine predictions in each
imputation to make a single imputation per observation, and they are only
valid for normally distributed variables. So you cannot use mi predict to
obtain probabilities after a logistic regression equation, for example: you have
to predict the linear predictor, which is normally distributed, then transform
that into the predicted probability.

mi predict lp using(propensity), xb

mi passive: generate prop = exp(lp)/(1+exp(lp))

The above commands will created variables called lp and prop which
will be the same for all imputations for a given observation, even if there
was missing data in that observation. If you want predictions that vary
between imputations (for example residuals from a regression equation), there
is a command mi xeq (short for “multiple imputation execute”) for running
command on each impuation separately, but I’ll cover that in a separate
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tutorial.
We can compare the effects of predicting from the complete cases and pre-

dicting from the imputed data if we also obtain the complete case propensity
scores:
xi: logistic treated age disdur haq dascore i.pgen i.dm_grp ///

if _mi_m == 0

predict pc if _mi_m == 0

corr pc prop

If you enter the above commands, you will see that for the subjects with
complete data, the propensity scores are very similar (r = 0.9963) whether
we use the observed or imputed logistic regression equations. However, we
can include substantially more subjects in our analysis by using the imputed
data, as shown in Listing ??

Listing 6 Subjects with complete and missing data

. tab _mi_miss treat, co

+-------------------+

| Key |

|-------------------|

| frequency |

| column percentage |

+-------------------+

| treated

_mi_miss | 0 1 | Total

-----------+----------------------+----------

0 | 1,632 9,758 | 11,390

| 62.99 88.44 | 83.60

-----------+----------------------+----------

1 | 959 1,275 | 2,234

| 37.01 11.56 | 16.40

-----------+----------------------+----------

Total | 2,591 11,033 | 13,624

| 100.00 100.00 | 100.00

We have been able to include an extra 2,234 subjects in our analysis. More
importantly, more than 1/3 of untreated subjects had at least one missing
variable, compared to 1/8 treated subjects. Since we are short of controls to
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begin with, the fact that we don’t need to lose such a substantial number is
a definite bonus.

It may be tempting to impute a single dataset, so that you don’t need to
worry about mi estimate. Particularly when you are exploring the data and
checking for the balance of the various predictor variables, it would be easier
to use standard Stata modelling commands. However, there are theoretical
and empirical grounds for believing that multiple imputations can improve
the precision of your parameter estimates. I would therefore recommend,
having decided on your analysis strategy, to perform an entire analysis on a
multiply imputed dataset.

8 Imputation Diagnostics

When analysing imputed data, it is vital to get some idea of how much
uncertainty in your answer is due to the variation between imputations, and
how much is inherent in the data itself. Ideally, you want very little variation
between imputations: if your answer is consistent for multiple sets of imputed
data, then it is more likely to be correct. In addition, there is always a
concern that the imputations were not performed correctly: either there are
associations between the variables that were not modelled, or the associations
between the variables are different in those who did not respond compared to
those who did respond (data Missing Not At Random). Even if the imputed
data are incorrect, the answer may still be adequate if the imputations all
give similar answers.

A very useful parameter to look at to answer this question is the propor-
tion of missing information about a particular parameter, referred to as λ in
[?]. Note that this parameter is not the same as the proportion of missing
data: it may be that there is a lot of missing data about a weak confounder,
which does not affect the parameter of interest greatly at all.

The variance of the parameter you are interested is

T = W + (1 + 1/m)B

Where W is the mean of the variances of the parameter in each imputation,
and B is the variance between imputations. So, if we had complete data, the
variance would be W in each imputation, so the relative increase in variance
due to missing data is

(1 + 1/m)B

W
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There is a related number, the fraction of missing information, which has
a complicated definition but generally takes similar values and assesses the
same concept: how much have we lost through the missing data.

We can look at at the fraction of missing information (FMI) and the rel-
ative variance increase (RVI) due to the missing date by using the vartable

option with mi estimate. If no estimation command is given to mi estimate,
it uses the last one, provided that the last estimation command was mi

estimate. Since we have run a logistic regression since, we will have to
rerun the mi estimation:

Listing 7 Missing information due to missing data

. xi: mi estimate, vartable: logistic treated age disdur haq dascore ///

> i.pgen i.dm_grp

i.pgen _Ipgen_0-1 (naturally coded; _Ipgen_0 omitted)

i.dm_grp _Idm_grp_1-6 (naturally coded; _Idm_grp_1 omitted)

Multiple-imputation estimates Imputations = 20

Logistic regression

Variance information

------------------------------------------------------------------------------

| Imputation variance Relative

| Within Between Total RVI FMI efficiency

-------------+----------------------------------------------------------------

age | 6.3e-06 1.5e-07 6.4e-06 .025345 .024781 .998762

disdur | .000011 4.4e-07 .000011 .042448 .040887 .99796

haq | .002346 .000603 .002979 .269874 .216238 .989304

dascore | .000842 .000093 .00094 .115731 .10474 .99479

_Ipgen_1 | .00473 .000066 .004799 .014627 .014438 .999279

_Idm_grp_2 | .01272 .000821 .013582 .067803 .063895 .996815

_Idm_grp_3 | .013199 .000526 .013751 .041835 .040318 .997988

_Idm_grp_4 | .01552 .000764 .016322 .051667 .049371 .997538

_Idm_grp_5 | .019619 .000701 .020355 .037518 .036294 .998189

_Idm_grp_6 | .020282 .001013 .021345 .052444 .050079 .997502

_cons | .054295 .002656 .057084 .051369 .049098 .997551

------------------------------------------------------------------------------

There are a few surprises here. First, there was no missing data for pgen,
yet there is about 2.5% missing information. This is due to confounding:
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HAQ scores are higher in the women than they are in the men, so the dif-
ference in treatment rates between men and women is partly a direct effect,
and partly due to differences in HAQ. The coefficient for pgen is adjusted for
differences in HAQ, but the values of HAQ (and hence the adjustment) vary
between imputations. Hence, the coefficent of pgen also varies. A similar
argument explains the effect of missing data on age, despite very few missing
values for age: there is a very strong association between age and HAQ, so
the missing values for HAQ affect the coefficient for age quite markedly.

The missing information about the HAQ is even more extreme: 13%
missing data, but 22% missing information. This is because most of the
missing data is in the untreated subjects, and there are already fewer of
these. In fact, the 30% missing data in the untreated is very close to the 30%
missing information overall.

The “Relative Efficiency” column in the table above refers to how precise
each estimate is given the number of imputations used, relative to how precise
it could be with an infinite number of imputations. You can see that for
all parameters except HAQ score, the relative efficiency is over 99%. It is
recommended that the number of imputations should be at least 100 times
the largest FMI[], which would suggest we need 22 imputations here, rather
than the 20 that we actually did. That should be enough to take the relative
efficiency for HAQ to 99%.
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