
32) From the notes we see that the parts of Theorem 4.2 that concern us are:

Let s and t be two simple non-negative F -measurable functions on (X,F , µ)
and E, F ∈ F . Then

(i) IE(cs) = cIE(s) for all c ∈ R,

(ii) IE(s + t) = IE(s) + IE(t),

(iii)If s ≤ t on E then IE(s) ≤ IE(t),

(iv) If F ⊆ E then IF (s) ≤ IE(s).

Proof As in Lemma 3.7 write

s =
M∑
i=1

aiχAi
=

M∑
i=1

N∑
j=1

aiχCij
and t =

N∑
j=1

bjχBj
=

M∑
i=1

N∑
j=1

bjχCij

with Cij = Ai ∩Bj ∈ F .

(i) Note that cs =
∑M

i=1 caiχAi
and so

IE(cs) =
M∑
i=1

caiµ(Ai)

= c

M∑
i=1

aiµ(Ai) = cIE(s).

(ii) Note that s + t =
∑M

i=1

∑N
j=1(ai + bj)χCij

and so

IE(s + t) =
M∑
i=1

N∑
j=1

(ai + bj)µ(Cij ∩ E)

=
M∑
i=1

N∑
j=1

aiµ(Cij ∩ E) +
M∑
i=1

N∑
j=1

bjµ(Cij ∩ E)

=
M∑
i=1

aiµ

(
N⋃

j=1

(Cij ∩ E)

)
+

N∑
j=1

bjµ

(
M⋃
i=1

(Cij ∩ E)

)

since µ is additive

=
M∑
i=1

aiµ(Ai ∩ E) +
N∑

j=1

bjµ(Bj ∩ E)

= IE(s) + IE(t).
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(iii) Given any pair (i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N for which Cij ∩ E 6= φ, we
have for any x ∈ Cij ∩ E that

ai = s(x) since x ∈ Cij ⊆ Ai

≤ t(x) since s ≤ t

= bj since x ∈ Cij ⊆ Bj.

So

IE(s) =
M∑
i=1

N∑
j=1

aiµ(Cij ∩ E) ≤
M∑
i=1

N∑
j=1

bjµ(Cij ∩ E) = IE(t).

(iv) By the monotonicity of µ we have

IF (s) =
M∑
i=1

aiµ(Ai ∩ F ) ≤
M∑
i=1

aiµ(Ai ∩ E) = IE(s).

33) a) Start with

n log

(
1 +

t

n

)
= n

∫ 1+ t
n

1

dy

y
=

∫ t

0

dx

1 + x
n

=

∫ t

0

ndx

n + x
.

Now
{

n
n+x

}
n≥1

is an increasing sequence of non-negative, Lebesgue in-

tegrable functions with limit function ≡ 1. So by Lebesgue’s Monotonic
Convergence Theorem we find that

lim
n→∞

n log

(
1 +

t

n

)
= lim

n→∞

∫ t

0

ndx

n + x
=

∫ t

0

lim
n→∞

ndx

n + x
= t.

b) Given m > n then for x > 0 we have mn + mx > mn + nx and so

m

m + x
>

n

n + x
.

Thus

m log

(
1 +

t

m

)
=

∫ t

0

mdx

m + x
>

∫ t

0

ndx

n + x
= n log

(
1 +

t

n

)
,

or

(
1 +

t

m

)m

>

(
1 +

t

n

)n

.
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Defining

gn(x) =

{ (
1 + x

n

)n
e−2x for 0 ≤ x ≤ n

0 for n < x

we have an increasing sequence of non-negative Lebesgue measurable func-
tions. The limit function is g(x) = exe−2x = e−x for all x ≥ 0 having used
part (a). So by Lebesgue’s Monotonic Convergence Theorem we find that

lim
n→∞

∫ n

0

(
1 +

x

n

)n

e−2xdx =

∫ ∞

0

e−xdx = 1.

34) a) Starting with (1− x)−2 = 1 + 2x + 3x2 + ... =
∑∞

n=0 (n + 1) xn, gives

(
log x

1− x

)2

=
∞∑

n=0

(n + 1) xn (log x)2 .

Apply Corollary 4.13 with fn(x) = (n + 1) xn (log x)2. These are con-
tinuous functions on [0, 1] and so are Lebesgue measurable. Obviously non-
negative so

∫ 1

0

(
log x

1− x

)2

dx =
∞∑

n=0

(n + 1)

∫ 1

0

xn (log x)2 dx.

Integrate by parts twice to see that

∫ 1

0

xn (log x)2 dx =
2

(n + 1)3 .

Hence

∫ 1

0

(
log x

1− x

)2

dx =
∞∑

n=0

2

(n + 1)2 = 2
∞∑

n=1

1

n2
=

π2

3
.

b) As in (a) use Corollary 4.13 to justify

∫ 1

0

xp log x

1− x
dx =

∞∑
n=0

∫ 1

0

xp+n log xdx.

Integrating by parts gives

∫ 1

0

xp+n log xdx =

[
xp+n+1

p + n + 1
log x

]1

0

−
∫ 1

0

xp+n

p + n + 1
dx.

To deal with the first term at x = 0 we require p+n+1 > 0 for all n ≥ 0,
that is, p > −1. In which case
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∫ 1

0

xp+n log xdx = 0− 1

(p + n + 1)

[
xp+n+1

p + n + 1

]1

0

= − 1

(p + n + 1)2 .

Hence

∫ 1

0

xp log x

1− x
dx = −

∞∑
n=0

1

(p + n + 1)2 = −
∞∑

n=1

1

(p + n)2

as long as p > −1.

35) Looking first at those x for which f takes on the values 0, 1 and 2 we find

f(x) = 0 for either x ∈ Q or 0.1 ≤ x ≤ 1,

f(x) = 1 for x /∈ Q and 0.01 ≤ x < 0.1,

f(x) = 2 for x /∈ Q and 0.001 ≤ x < 0.01, etc.

(There might be concern that a number such as x = 0.01 can also be written
as 0.009999... for which f would give a different value. We need not worry,
the collection of such points is such a small set, i.e. one of measure zero, that
it would not effect the value of the integral.)

For our sequence of simple functions simply choose

fN(x) =

{
f(x) 10−N ≤ x ≤ 1
0 elsewhere.

Since f(x) ≥ 0 this is an increasing sequence of functions. Each fN is
simple, taking only integral values between 0 and N − 1. Also the functions
are measurable, with

{x : f(x) = 0} = Q∪ [
1
10

, 1
)

and, for each 1 ≤ n ≤ N − 1,

{x : f(x) = n} = Qc∩ [
1

10n+1 ,
1

10n

)
,

which are all measurable sets.
We can quickly evaluate the integral of these simple functions, I[0,1] (fn) ,

as
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N−1∑
j=1

jµ

(
Q ∩

[
1

10j+1
,

1

10j

])
=

N−1∑
j=1

j

(
1

10j
− 1

10j+1

)

=
N−1∑
j=1

j

10j
−

N∑
j=2

(j − 1)

10j

=
1

10
+

N−1∑
j=2

j − (j − 1)

10j
− N

10N

=
N−1∑
j=1

1

10j
− N

10N
.

By Lebesgue’s Monotonic Convergence Theorem we get

∫ 1

0

fdµ = lim
N→∞

(
N−1∑
j=1

1

10j
− N

10N

)
=

∞∑
j=1

1

10j
= 0.111... = 1

9
.

36) Using the definition of φ given in the question and the representation of
f as a series we see that

φ

( ∞⋃
n=1

En

)
=

∫
S∞

n=1 En

fdµ =

∫
S∞

n=1 En

( ∞∑
m=1

fm

)
dµ

=
∞∑

m=1

∫
S∞

n=1 En

fmdµ by Corollary 4.13

=
∞∑

m=1

∫

Em

fmdµ since fm ≡ 0 on En when n 6= m

=
∞∑

m=1

∫

Em

fdµ since fm = f on Em

=
∞∑

m=1

φ(Em).

Hence φ is σ-additive.

37) Let x ∈ R be given. Then

lim inf
n→∞

gn(x) = lim
n→∞

{
inf
r≥n

gr(x)

}
.
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But gr(x) ≥ 0 and gr(x) = 0 for all r ≥ x − 1 (see definition of gr), so
infr≥n gr(x) = 0. True for all x implies lim inf

n→∞
gn ≡ 0 and so

∫
R lim inf

n→∞
gndµ =

0.

Yet
∫
R gndµ = 1 for all n and so lim inf

n→∞
∫
R gndµ = 1. Thus we have strict

inequality.

38) a) Since we have both 0 ≤ max(a, 0) and a ≤ max(a, 0) it follows that

0 = 0 + 0 ≤ max(a, 0) + max(b, 0),
a + b ≤ max(a, 0) + max(b, 0),

and so

max(a + b, 0) ≤ max(a, 0) + max(b, 0).

b) Since we have both min(a, 0) ≤ 0 and min(a, 0) ≤ a it follows that

min(a, 0) + min(b, 0) ≤ 0,

min(a, 0) + min(b, 0) ≤ a + b,

and so

min(a, 0) + min(b, 0) ≤ min(a + b, 0).

c)

(f + g)+(x) = max((f + g)(x), 0)

= max(f(x) + g(x), 0)

≤ max(f(x), 0) + max(g(x), 0), by part (a),

= f+(x) + g+(x).

d)

(f + g)−(x) = −min((f + g)(x), 0)

≤ −min(f(x), 0)−min(g(x), 0), by part (b),

= f−(x) + g−(x).

39) If we have |a− b| = a + b where a, b ≥ 0 we can square both sides to get
|a− b|2 = (a + b)2, in which case, −2ab = 2ab. Thus ab = 0 and so either
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a = 0 or b = 0. It should be noted that with either of these possibilities we
have equality as required.

40) (i) Let

fn(x) =

{
f(x) if x ≤ n
0 if x > n.

Recall from notes that f is Lebesgue integrable if, and only if, |f | is Lebesgue
integral. Since |fn| ≤ |f | this first gives us that |fn| and thus fn are Lebesgue
integrable. But further, limn→∞ fn(x) = f(x) with |f | is integrable and
|fn| ≤ |f | means that we can apply Lebesgue’s Dominated Convergence
Theorem and deduce that

∫ ∞

0

fdµ = lim
n→∞

∫ ∞

0

fndµ

= lim
n→∞

∫ n

0

fndµ since fn(x) = 0 for all x > n,

= lim
n→∞

∫ n

0

fdµ. since fn(x) = f(x) for all x ≤ n.

(ii) We now assume that f is Lebesgue measurable (which is weaker than
Lebesgue integrable) and non-negative. The sequence of functions fn defined
in part (i) form an increasing sequence of Lebesgue measurable non-negative
functions and so we can apply Lebesgue’s Monotonic Convergence Theorem
to deduce that

∫ ∞

0

fdµ = lim
n→∞

∫ ∞

0

fndµ = lim
n→∞

∫ n

0

fndµ = lim
n→∞

∫ n

0

fdµ. (*)

41) The function f(t) = e−ttx−1 is continuous over [0,∞) and so is Lebesgue
measurable over that interval. We have to show that it is Lebesgue integrable
by showing that it’s integral over [0,∞) is finite. We do this by applying
(40)(ii) and calculating limn→∞

∫ n

0
fdµ. In fact all we do is show that this

limit is finite by bounding the integrand e−ttx−1 in terms of functions that
are easier to integrate. For example, for t ∈ [0, 1], we have e−ttx−1 ≤ e−1tx−1

and so

∫ 1

0

e−ttx−1dµ ≤ e−1

∫ 1

0

tx−1dµ = e−1

[
tx

x

]1

0

=
e−1

x
< ∞.

For t ≥ 1 we can find(†) κ = κ(x) such that tx−1 ≤ κet/2 in which case
e−ttx−1 ≤ κe−t/2 and so
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∫ n

1

e−ttx−1dµ ≤ κ

∫ n

1

e−t/2dµ < 2κ.

So the limit in (*) is of an increasing sequence of values of integrals
bounded above, hence the limit exists. Thus e−ttx−1 is Lebesgue integrable.

(†) Let N be an integer > x− 1. It suffices to find κ such that tN ≤ κet/2.
If N = 0 then κ = 1 will suffice. Assume N ≥ 1. Expanding, and taking the
j = N term,

et/2 =
∞∑

j=0

1

j!

(
t

2

)j

>
1

N !

(
t

2

)N

,

since t ≥ 0. So choose κ = 2NN !.

42) The restriction of t ≥ 0 in question 33(a) was not necessary so that result
holds also with t < 0, or equivalently,

lim
n→∞

n log

(
1− t

n

)
= −t, i.e. lim

n→∞

(
1− t

n

)n

= e−t

for t ≥ 0. Now define

fn(t) =

{ (
1− t

n

)n
tx−1 if 0 ≤ t < n

0 otherwise.

As in question 33(b) this is an increasing sequence. First note that

n log

(
1− t

n

)
= −

∫ t

0

ndx

n− x
.

Assume m > n then mn−mx < mn− nx so

m

m− x
<

n

n− x

which is well defined since x ≤ t < n, and so

m log

(
1− t

m

)
> −

∫ t

0

mdx

m− x
> −

∫ t

0

ndx

n− x
> n log

(
1− t

n

)

or

(
1− t

m

)m

>

(
1− t

n

)n

.
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Thus we can apply Lebesgue’s Monotonic Convergence Theorem to justify
the interchange of integration and limit in

Γ(x) =

∫ ∞

0

e−ttx−1dt =

∫ ∞

0

lim
n→∞

fn(t)dt = lim
n→∞

∫ ∞

0

fn(t)dt

= lim
n→∞

∫ n

0

fn(t)dt since fn (t) = 0 for all t > n.

By changes of variables and integrating by parts we see that, as long as
x + j 6= 0 for all of 0 ≤ j ≤ n, we have

∫ n

0

fn(t)dt =

∫ n

0

(
1− t

n

)n

tx−1dt = nx

∫ 1

0

(1− y)n yx−1dy

= nx

{[
(1− y)n yx

x

]1

0

+
n

x

∫ 1

0

(1− y)n−1 yxdy

}

= nx n

x

∫ 1

0

(1− y)n−1 yxdy = ...

= nx n!

x(x + 1)...(x + n− 1)

∫ 1

0

yx+n−1dy

=
n!nx

x(x + 1)...(x + n)
.

Hence

Γ(x) = lim
n→∞

n!nx

x(x + 1)...(x + n)
,

as long as x + j 6= 0 for all j ∈ N ∪ {0}, i.e. −x /∈ N ∪ {0}.
43) Starting with (ex−1)−1 = e−x(1−e−x)−1 = e−x

∑∞
j=0 (e−x)

j
we find that

xa−1

ex − 1
=

∞∑
n=1

xa−1e−xn,

for x > 0. This is a sum of non-negative Lebesgue measurable functions. So
we can use Corollary 4.13 to justify the interchange in
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∫ ∞

0

xa−1

ex − 1
dµ =

∫ ∞

0

∞∑
n=1

xa−1e−xndµ

=
∞∑

n=1

∫ ∞

0

xa−1e−xndµ

=
∞∑

n=1

1

na

∫ ∞

0

ta−1e−tdt

=
∞∑

n=1

1

na
Γ(a)

by the definition in Question 42. Note that the equality justified by Corollary
4.13 means that if one side is finite then so are both with the same value and
if one side in infinite then so is the other. In our case if a > 1 then

∑∞
n=1

1
na

is convergent and so both sides of our result are finite.

44)(i) Apply Lebesgue’s Dominated Convergence Theorem. From Question
33 we have that

lim
n→∞

(
1 +

x

n

)−n

sin
(x

n

)
= e−x × 0 = 0

for all x > 0. For a dominating function, h, choose a bound on the n = 3
integrand:

∣∣∣∣
(
1 +

x

n

)−n

sin
(x

n

)∣∣∣∣ ≤
(
1 +

x

n

)−n

≤
(
1 +

x

3

)−3

for all n ≥ 3. (Having used the fact proved in question 33 that
{(

1 + x
n

)n}
n≥1

is an increasing sequence.) The function h(x) =
(
1 + x

3

)−3
in integrable over

[0,∞] and so the Dominated Convergence Theorem justifies

lim
n→∞

∫ ∞

0

(
1 +

x

n

)−n

sin
(x

n

)
dx =

∫ ∞

0

lim
n→∞

(
1 +

x

n

)−n

sin
(x

n

)
dx

=

∫ ∞

0

0dx = 0.

(ii) Start from (1 + nx)(1 + x) > 1 + (n + 1)x to see that 1 + nx > 1+(n+1)x
1+x

and so

1 + nx

(1 + x)n
>

1 + (n + 1)x

(1 + x)n+1 .
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Thus the sequence of functions
{

1+nx
(1+x)n

}
n≥1

is decreasing. Though the terms

are non-negative and measurable we cannot use Lebesgue’s Monotonic Con-
vergence Theorem directly since it is concerned with increasing sequences.
Instead we might hope to use the Dominated Convergence Theorem. But
for this we need to know the limit, that the functions are integrable and
dominated by an integrable function. The limit is easily seen. If x = 0 then
all terms in the sequence equal 1 so the limit is 1. If x > 0 we start with the
observation that the binomial expansion gives (1 + x)n ≥ 1 + nx + n(n−1)

2
x2

and so

1 + nx

(1 + x)n
≤ 1 + nx

1 + nx + n(n−1)
2

x2
→ 0

as n → ∞. Thus the limit is 1 if x = 0 and 0 elsewhere, that is, 0 a.e.(µ)
on [0,∞). We could choose the dominating function to be the n = 3 term,
i.e. h(x) = (1 + 3x)/(1 + x)3. It is easily shown that

∫∞
0

h(x)dx = 2 and
so h is integrable. But also since the sequence of functions is decreasing
each function, at least for n ≥ 3, is integrable. Hence, using the Dominated
convergence Theorem we can justify the interchange in

lim
n→∞

∫ ∞

0

1 + nx

(1 + x)n
dµ =

∫ ∞

0

lim
n→∞

1 + nx

(1 + x)n
dµ =

∫ ∞

0

0dµ = 0.

45)(i) Start from

sech x2 =
2

ex2 + e−x2 =
2

ex2 (1 + e−2x2)
= 2

∞∑
n=0

(−1)ne−(2n+1)x2

.

We cannot use Corollary 4.13 directly because of the alternating sign.
Instead we write the sum as

2
∞∑

m=0

(
e−(4m+1)x2 − e−(4m+3)x2

)
,

which is now a sum of non-negative measurable functions. So by Corollary
4,13 we now get
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∫ ∞

0

sech x2dx = 2
∞∑

m=0

∫ ∞

0

(
e−(4m+1)x2 − e−(4m+3)x2

)
dµ

= 2
∞∑

m=0

( √
π

2
√

4m + 1
−

√
π

2
√

4m + 3

)

=
√

π

∞∑
m=0

(
1√

4m + 1
− 1√

4m + 3

)

=
√

π

∞∑
n=0

(−1)n

√
2n + 1

.

Here the hint given in the question has been used to get the second line.
Also the last line is only a conditionally convergent series (convergent by the
alternating sign test) and so the order of summation is important and that
is given by the bracketing in the line before.

(ii) As so often seen start with

cos x

ex + 1
=

∞∑
n=0

(−1)n e−(n+1)x cos x.

We hope to use Theorem 4.19 with gN the N th-partial sum, so

|gN | =

∣∣∣∣∣
N∑

n=0

(−1)n e−(n+1)x cos x

∣∣∣∣∣

≤
∣∣∣∣∣e
−x

N∑
n=0

(−e−x
)n

∣∣∣∣∣ =

∣∣∣∣∣e
−x 1− (−e−x)

N+1

1− e−x

∣∣∣∣∣

≤ 2

ex + 1
≤ 2

ex + ex
since ex ≥ 1 for x > 0,

= e−x.

So we can apply Lebesgue’s Dominated Convergence Theorem with h(x) =
e−x. Thus

∫ ∞

0

cos x

ex + 1
dx =

∫ ∞

0

∞∑
n=0

(−1)n e−(n+1)x cos xdx

=
∞∑

n=0

(−1)n

∫ ∞

0

e−(n+1)x cos xdx.
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Setting In =
∫∞

0
e−nx cos xdx and integrating by parts twice shows that

In = 1
n
− 1

n2 In, that is, In = n
n2+1

. Thus

∫ ∞

0

cos x

ex + 1
dx =

∞∑
n=1

(−1)n−1 In =
∞∑

n=1

(−1)n−1 n

n2 + 1
.

46) Start from

sinh bx

sinh ax
=

ebx − e−bx

eax − e−ax
=

ebx − e−bx

eax (1− e−2ax)
=

(
ebx − e−bx

) ∞∑
n=0

e−(2n+1)ax.

For x > 0 this is a sum over non-negative measurable functions and so
we can apply corollary 4.13 to deduce

∫ ∞

0

sinh bx

sinh ax
dx =

∫ ∞

0

(
ebx − e−bx

) ∞∑
n=0

e−(2n+1)axdx

=
∞∑

n=0

∫ ∞

0

(
ebx − e−bx

)
e−(2n+1)axdx

=
∞∑

n=0

[
ebx−(2n+1)ax

b− (2n + 1)a
− e−bx−(2n+1)ax

−b− (2n + 1)a

]∞

0

=
∞∑

n=0

(
1

−b− (2n + 1)a
− 1

b− (2n + 1)a

)

=
∞∑

n=0

2b

((2n + 1)a)2 − b2
.

Note that the condition b < a ensures that none of the denominators of
terms in the sum are zero.
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