21) Let E' € L be given. Assume first that p(E) is finite. We have

u(E) = ' (B) = inf 3 (A

over all covers £ C | J;2, A;, with A; € €. Given € > 0 choose a cover {4;};>1
such that

Yet by Theorem 1.7 we know that each

uz

A= U(az’ja bij]
j=1

a disjoint union which in turn can be covered by open intervals as in

< U (alﬂ’bw + 2”171 ) ’

j=1
Note that we have used the common trick of weighting € so we get convergent
series later. Choose

0o ng

G = UU(a”,bw+ )eu

i=17=1

which is a cover for FF. Then

w(G) < Z Z,u <(aw, bij + 21+€1n )) since p is subadditive

i=1 j=1

- 23 (sl + )

=1 j=1
since Lebesgue measure of an interval is simply it’s length,



=y Z n((aij, big]) +

i=1 j=1

= D> A

since the cover of A; is by a disjoint union of (a;;, b;;]

< (uB)+35)+35 = u(B)+e.

Hence, since £ C G and the measures are finite we find that u(G'\ F) =
w(G) — w(E) <e.

Assume now that pu(E) is infinite.

Decompose E = J,,.; En where E,, = EN[n,n+1). Then pu(E,) is finite
and we can follow the argument above but with ¢ replaced by €/2/"+2 to find
G, € U with E, C G,, and u(G,\E,) < ¢/2"*2. Thenset G = |, ., Gn €U
when

WG\ E) = ( U@, \E> G\ E)

< D G\ Ey) <

nEZ EZ
g 8
= 5+2 Z iz 2 T2

< &

Hence in both cases we can find G.

(*Note in the second part of the proof it was important that we could
decompose R = | J,,c; [, n 4 1), where each [n,n + 1) has finite measure, i.e.
(R, L, p) is o-finite.)

22) The result is trivial if ¢ = 0 so we may assume that ¢ # 0.

(i) If I € P then I = (a,b] for some a and b and

pu(el) = p((ca,cb])if ¢ >0
cb—ca
= c(b—a)=cu().



If ¢ < 0 then

p(el) = p([cb, ca))
= ca—cbh
= —c(b—a)=—cu(l).

So we see that both cases can be written as pu(cl) = |c|u(I).

(ii) If E € & then, by Theorem 1.7, E = |J;_, I;, a disjoint union of I; € P.
By definition of the extended measure given in the proof of Theorem 2.2 we
have p(E) = Y"1 | u(L;) which by part (i) gives pu(cE) = |e|u(E).

(iii) We now look at the outer measure p*. Let A C R. Then there is a map
between the covers {E;};>1 C € of A and the covers {E!};>1 C & of cA given
by E; — cE; and E] — 1E/. By (ii) we have that u(E;) = ﬁ,u(cEi) and
W(E.) = [clu(2E!) and so

{ZM(Ei)IAQUEi,Ez‘Gg} = {%ZM(CEZ')ZCAQUCE@',E,'EE}
— {%ZME;):CAQ E{,E;ee}.

)

The infimum of the first and third sets are equal, that is,
N ) 1 1,
pH(A) = inf 3 (B = inf 7 3 n(EY) = ().
Hence p*(cA) = |e|u*(A).

(iv) Let £ € £ and = € R be given. Take any test set A C R. Apply the
definition of measurable set to E with test set %A to get

() = o ()0 ()

= u (1 (AN cE)) + p* (% (AN (cE)C)> :
By (iii) this gives

C

i‘u* (A) = %u* (ANcE) + %u* (AN (cE)?),
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in which case

W (A) = 1 (AN CB) + 1" (AN (E))
for all test sets A C R. Hence cE € L. Of course u* = p on £ and so (iii)

gives

p(cE) = p*(cE) = |e|p™(E) = |c|p(E)
for all £ € L.
23) Simply note that

z € f7! (GAZ> & f(m)eDAi

f(z) € A; for some j > 1
z € f71(A;) for some j > 1

& zelJr (4.
=1

Tt o

Similarly
r e [ (ﬂ Ai> & flz)e (A
i=1 i=1

& f(x) e A;foralli > 1

& xe fHA) foralli>1

& ze()f (A4

i=1

Finally,

€ fUAY) & fz) € A°
& fla) ¢ A
& x ¢ fTH(A)
& ze (f7Y(A)".

24) a) Let G be the o-field generated by the intervals [—oo, ¢). Then R*\[—o0, ¢) =
[c,00] € G for all ¢ € R. Thus [—00,d) N [¢,00] = [¢,d) € G for all ¢,d € R.
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So G must contain the smallest o-field containing [c, d) for all ¢,d € R, which
from question 14 we know to be B.

Also G contains {+o00} = (,5,[n, +00] and {—oo} =(,5,[—00, —n).

Hence G contains the smallest o-field containing B and {—oc, +00}, that
is, B*. So B* C G.

For the reverse set inclusion note that trivially each [—o0, ¢) =, ~,[—n, c)U
{—oc} € B*. So B*, a o-field, contains the smallest such o-field containing
these [—o0,¢), i.e. G C B*.

Hence G = B*.

b) Just repeat the proof of Theorem 3.3 in the notes. So let A be the
collection of all intervals of the form [—oo, ¢). So part (a) implies that o(A) =
B*.

By cF it fHe(A)) C
iff o(f71(A) €
iff fYA)CF since F is a o-field, (see question 13)
if f7'([~o0,c)) CF forall c €R, by definition of A
iff {x:f(z)<c}eF forall ceR.

by Lemma 3.2,

25) Recall the definition that o = inf x; if, and only if, o < z; for all 7 and,

given € > 0, there exists j such that o < z; < a + ¢. Yet this holds if,

and only if, —a > —ux; for all ¢ and, given € > 0 there exists j such that

—o > —xj; < —a — ¢, which is simply the definition that —a = sup(—x;).
Hence — inf z; = sup(—z;). Thus

fmsup(—z,) = lim {sup(-a)}

n—00 n—00 r>n

= lim < —inf z,
n— oo r>n

= — lim <infz, ;.
n—oo | r>n

= —liminfz,.

n—oo

26) a) The negation of the given expression is



~(IN>1:Yn>N,xz¢ A,) = VYN>1,-(Vn>N, ¢ A,)
VN >1,3n> N,—(z ¢ A,)
VN >1,dn> N, x € A,
VN >1lze | J A,

n>N
T E ﬂ UA”

N>1n>N

= 1 € limsupA,.

n—oo

So z € limsup,,_, ., 4, if, and only if, it is not the case that z is in only
finitely many A,,, that is, x is in infinitely many A,,. Thus

limsupA,, = {z : x € A, for infinitely many n}.

n—oo

(b) This time we note that x € A,, for all but finitely many n if, and only if,
there exists N such that x € A, for all n > N. That is

x € A, for all but finitely many n
= dN>1:VYn>Nax € A,
= AN>1z€e () A
n>N
T E U ﬂ A,
N>1n>N
r € liminfA,.

n—oo

Thus

liminfA, = {z : x € A, for all but finitely many n}.

n—oo

(c) Assume A; C Ay C A3 C Ay C ... . Trivially we have

limsupA,, and liminfA,, C U Ap.
n—o00 n—oo el
If now z € U,—, A then x € Ay for some | > 1. Then z € Ay for all
k > 1, that is, x € A,, for infinitely many n and so = € limsup,,_, . 4,. Also,
x could not be an element only of sets A; with k& < ¢ in which case x € A,
for all but finitely many n and so x € liminf, .. A,,. Thus we have
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U A ClimsupA, and liminfA,,.

n—00
n—00
k=1

Hence we get equality.

(d) Assume that A; D Ay D A3 D Ay D ... If x € [, A then z € Ay for
all k£ and so we have both that x € A,, for infinitely many n and x € A,, for
all but finitely many n. Thus x € limsup,_,. A, and x € liminf, . A4,.
Hence

U A ClimsupA,, and liminfA,

n—o00
n—o00
k=1

which leads to equality as before.

(e)

(nmsupAn)c _ (m U An>c: U (U An>c

oo N>1n>N N>1 \n>N
_ c _ 1 : c
= U ﬂ Af = liminfAS.
n—oo
N>1n>N

27) So A, = (—1/n,1] if n odd and A, = (—1,1/n] if n even.

If z € A, for all but finitely many n then x € (—1/n, 1] for all sufficiently
large odd n, in which case we must have x € [0,1]. Also z € (—1,1/n] for all
sufficiently large even n, in which case we must have € (—1,0]. Hence the
only possibility is = 0. Since 0 € (—1/n, 1] and (—1,1/n] for all n we have
0 € liminf, . A,. Hence liminf, ., A, = {0}.

Consider now limsup,,_,. A,. If x € A,, for infinitely many n then per-
haps z € (—1/n, 1] for an infinite collection of odd n in which case z € [0, 1].
Or perhaps x € (—1,1/n] for an infinite collection of even n in which case
xz € (—1,0]. Hence all points in (—1,1] could lie in limsup,,_,. A,. Since
A, C (—1,1] for all n there is no chance of any more points in limsup,,_, . A,.
Hence limsup,,_, . 4, = (—1,1].

28) Let By = 2N, Fy = 4N, E3 = 8N, E, = 16N, ..., so in general F,, = 2"N.
Then, given any m € Z, when 2" > m we find that m ¢ 2"N. Hence
Nys1 En = ¢ and so 1 (N,5, En) = 0, Yet u(E,) = oo for all n and so

iy, o p1(En) # 1 (Nps1 Bn) -

29) The hint given is to use
Lemma 4.1 If Ay C Ay C A3 C ...arein F and A=J _, A, then



lim 1i(A,) = p(A).

n—oo

The present example on a decreasing sequence can be converted to this
lemma concerning increasing sequences by noting that E; O Ey O E3 D
E, DO ... means that

E\\E,CE\E;sCE\E,C
Hence, by Lemma 4.1,

lim p(Ey\ ) = p (U (B \ En>> . (a)

n=1

Note that since pu(E;) < oo and E,, C E; we can say that u(F; \ E,) =
w(Ey)—p(Ey,) (this would not necessarily hold if the sets had infinite measure)
while

G(El\E OElﬂE EmGE;

n=1 n=1

nn(Ae) -5 ()
n=1 n=1
And so

(G () 1)

Substituting into (a) gives

Tim (p(Er) = p(En)) = p(Er) — (ﬂ En)

which gives the stated result.

30) (a) Throughout this question F'(a—) will denote the limit from the left,
ie. lims_g 50 F(a —9).



pr(la,b]) = pp (ﬂ (a— %71)})

n=1
= lim pp ((a — %, b}) by question 29,
= lim (F(b)— F (a — 1))
= F(b)— F(a—)

pr((a,b) = pp (U (a,b— %])

= lim pp ((a,b — %]) by Lemma 4.1,

b) Try

0 ifxz<O
Flx)=4¢ 1 f0<z<1
2 if1 <.

Then, using the results from part (a),

up((0,1)) = F(1-) = F(0)=1—1=0,
F(1)—F(0) = 2—1=1
up(0.1)) = F(1)— F(0-)=2-0=2

Hence



as required.

31)(a)
({2}) (2,2)) = F(2) - F(2-) =9-6=3
(b)
([-1/2,3)) = F(3—) = F(=1/2—) =9 (1-3) =73
()
(=1,0]U(1,2)) = wup((=1,0]) + pp((1,2)) since pp is additive
= (F(0) = F(=1)) + (F(2—) - F(1))
= (2-0)+(6-23)
= 5.
d)
pe([0,1/2)U(1,2]) = pp((0,1/2) + pp((1,2])
= (F(1/2=) = F(0-)) + (F(2) - F(1))
= (2;-1)+0-3)
= 7%
e)

{z:|z]+22°>1} = {z:2>1/2}U{z:2<-1/2}

- Utmu U md).

n>1 m>1
So question 29 implies that
pl{a s Jal 4+ 20 > 1)) = lin g ((5,0)) + L g ((—m, 3))

But

pp ((3,n)) = F(n—) — F(1/2) =9 — 21 =62, for all n > 3.
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)) = F(=1/2) ~ F(-m) = } ~0=

1
2

pp({z:|z|+ 22> > 1}) = 74,

11

1
29

for all m > 1.



