21) Let $E \in \mathcal{L}$ be given. Assume first that $\mu(E)$ is finite. We have

$$
\mu(E)=\mu^{*}(E)=\inf \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

over all covers $E \subseteq \bigcup_{i=1}^{\infty} A_{i}$, with $A_{i} \in \mathcal{E}$. Given $\varepsilon>0$ choose a cover $\left\{A_{i}\right\}_{i \geq 1}$ such that

$$
\mu(E) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)<\mu(E)+\frac{\varepsilon}{2}
$$

Yet by Theorem 1.7 we know that each

$$
A_{i}=\bigcup_{j=1}^{n_{i}}\left(a_{i j}, b_{i j}\right]
$$

a disjoint union which in turn can be covered by open intervals as in

$$
\subseteq \bigcup_{j=1}^{n_{i}}\left(a_{i j}, b_{i j}+\frac{\varepsilon}{2^{i+1} n_{i}}\right) .
$$

Note that we have used the common trick of weighting ε so we get convergent series later. Choose

$$
G=\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{n_{i}}\left(a_{i j}, b_{i j}+\frac{\varepsilon}{2^{i+1} n_{i}}\right) \in \mathcal{U}
$$

which is a cover for E. Then

$$
\begin{aligned}
\mu(G) & \leq \sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \mu\left(\left(a_{i j}, b_{i j}+\frac{\varepsilon}{2^{i+1} n_{i}}\right)\right) \text { since } \mu \text { is subadditive } \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}}\left(\mu\left(\left(a_{i j}, b_{i j}\right]\right)+\frac{\varepsilon}{2^{i+1} n_{i}}\right)
\end{aligned}
$$

since Lebesgue measure of an interval is simply it's length,

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \mu\left(\left(a_{i j}, b_{i j}\right]\right)+\frac{\varepsilon}{2} \\
& =\sum_{i=1}^{\infty} \mu\left(A_{i}\right)+\frac{\varepsilon}{2}
\end{aligned}
$$

$$
\text { since the cover of } A_{i} \text { is by a disjoint union of }\left(a_{i j}, b_{i j}\right]
$$

$$
<\left(\mu(E)+\frac{\varepsilon}{2}\right)+\frac{\varepsilon}{2}=\mu(E)+\varepsilon
$$

Hence, since $E \subseteq G$ and the measures are finite we find that $\mu(G \backslash E)=$ $\mu(G)-\mu(E)<\varepsilon$.
Assume now that $\mu(E)$ is infinite.
Decompose $E=\bigcup_{n \in \mathbb{Z}} E_{n}$ where $E_{n}=E \cap[n, n+1)$. Then $\mu\left(E_{n}\right)$ is finite and we can follow the argument above but with ε replaced by $\varepsilon / 2^{|n|+2}$ to find $G_{n} \in \mathcal{U}$ with $E_{n} \subseteq G_{n}$ and $\mu\left(G_{n} \backslash E_{n}\right)<\varepsilon / 2^{|n|+2}$. Then set $G=\bigcup_{n \in \mathbb{Z}} G_{n} \in \mathcal{U}$ when

$$
\begin{aligned}
\mu(G \backslash E) & =\mu\left(\bigcup_{n \in \mathbb{Z}}\left(G_{n} \backslash E\right)\right) \leq \sum_{n \in \mathbb{Z}} \mu\left(G_{n} \backslash E\right) \\
& \leq \sum_{n \in \mathbb{Z}} \mu\left(G_{n} \backslash E_{n}\right) \leq \sum_{n \in \mathbb{Z}} \frac{\varepsilon}{2^{n \mid+2}} \\
& =\frac{\varepsilon}{2^{2}}+2 \sum_{n \geq 1} \frac{\varepsilon}{2^{n+2}}=\frac{\varepsilon}{2^{2}}+2 \frac{\varepsilon}{2^{2}} \\
& <\varepsilon
\end{aligned}
$$

Hence in both cases we can find G.
(*Note in the second part of the proof it was important that we could decompose $\mathbb{R}=\bigcup_{n \in \mathbb{Z}}[n, n+1)$, where each $[n, n+1)$ has finite measure, i.e. $(\mathbb{R}, \mathcal{L}, \mu)$ is σ-finite.)
22) The result is trivial if $c=0$ so we may assume that $c \neq 0$.
(i) If $I \in \mathcal{P}$ then $I=(a, b]$ for some a and b and

$$
\begin{aligned}
\mu(c I) & =\mu((c a, c b]) \text { if } c>0 \\
& =c b-c a \\
& =c(b-a)=c \mu(I)
\end{aligned}
$$

If $c<0$ then

$$
\begin{aligned}
\mu(c I) & =\mu([c b, c a)) \\
& =c a-c b \\
& =-c(b-a)=-c \mu(I)
\end{aligned}
$$

So we see that both cases can be written as $\mu(c I)=|c| \mu(I)$.
(ii) If $E \in \mathcal{E}$ then, by Theorem $1.7, E=\bigcup_{i=1}^{n} I_{i}$, a disjoint union of $I_{i} \in \mathcal{P}$. By definition of the extended measure given in the proof of Theorem 2.2 we have $\mu(E)=\sum_{i=1}^{n} \mu\left(I_{i}\right)$ which by part (i) gives $\mu(c E)=|c| \mu(E)$.
(iii) We now look at the outer measure μ^{*}. Let $A \subseteq \mathbb{R}$. Then there is a map between the covers $\left\{E_{i}\right\}_{i \geq 1} \subseteq \mathcal{E}$ of A and the covers $\left\{E_{i}^{\prime}\right\}_{i \geq 1} \subseteq \mathcal{E}$ of $c A$ given by $E_{i} \rightarrow c E_{i}$ and $E_{i}^{\prime} \rightarrow \frac{1}{c} E_{i}^{\prime}$. By (ii) we have that $\mu\left(E_{i}\right)=\frac{1}{|c|} \mu\left(c E_{i}\right)$ and $\mu\left(E_{i}^{\prime}\right)=|c| \mu\left(\frac{1}{c} E_{i}^{\prime}\right)$ and so

$$
\begin{aligned}
\left\{\sum_{i} \mu\left(E_{i}\right): A \subseteq \bigcup_{i} E_{i}, E_{i} \in \mathcal{E}\right\} & =\left\{\frac{1}{|c|} \sum_{i} \mu\left(c E_{i}\right): c A \subseteq \bigcup_{i} c E_{i}, E_{i} \in \mathcal{E}\right\} \\
& =\left\{\frac{1}{|c|} \sum_{i} \mu\left(E_{i}^{\prime}\right): c A \subseteq \bigcup_{i} E_{i}^{\prime}, E_{i}^{\prime} \in \mathcal{E}\right\}
\end{aligned}
$$

The infimum of the first and third sets are equal, that is,

$$
\mu^{*}(A)=\inf \sum_{i} \mu\left(E_{i}\right)=\inf \frac{1}{|c|} \sum_{i} \mu\left(E_{i}^{\prime}\right)=\frac{1}{|c|} \mu^{*}(c A) .
$$

Hence $\mu^{*}(c A)=|c| \mu^{*}(A)$.
(iv) Let $E \in \mathcal{L}$ and $x \in \mathbb{R}$ be given. Take any test set $A \subseteq \mathbb{R}$. Apply the definition of measurable set to E with test set $\frac{1}{c} A$ to get

$$
\begin{aligned}
\mu^{*}\left(\frac{1}{c} A\right) & =\mu^{*}\left(\left(\frac{1}{c} A\right) \cap E\right)+\mu^{*}\left(\left(\frac{1}{c} A\right) \cap E^{c}\right) \\
& =\mu^{*}\left(\frac{1}{c}(A \cap c E)\right)+\mu^{*}\left(\frac{1}{c}\left(A \cap(c E)^{c}\right)\right)
\end{aligned}
$$

By (iii) this gives

$$
\frac{1}{|c|} \mu^{*}(A)=\frac{1}{|c|} \mu^{*}(A \cap c E)+\frac{1}{|c|} \mu^{*}\left(A \cap(c E)^{c}\right)
$$

in which case

$$
\mu^{*}(A)=\mu^{*}(A \cap c E)+\mu^{*}\left(A \cap(c E)^{c}\right)
$$

for all test sets $A \subseteq \mathbb{R}$. Hence $c E \in \mathcal{L}$. Of course $\mu^{*}=\mu$ on \mathcal{L} and so (iii) gives

$$
\mu(c E)=\mu^{*}(c E)=|c| \mu^{*}(E)=|c| \mu(E)
$$

for all $E \in \mathcal{L}$.
23) Simply note that

$$
\begin{aligned}
x & \in f^{-1}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \Leftrightarrow f(x) \in \bigcup_{i=1}^{\infty} A_{i} \\
& \Leftrightarrow \quad f(x) \in A_{j} \text { for some } j \geq 1 \\
& \Leftrightarrow x \in f^{-1}\left(A_{j}\right) \text { for some } j \geq 1 \\
& \Leftrightarrow x \in \bigcup_{i=1}^{\infty} f^{-1}\left(A_{j}\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
x & \in f^{-1}\left(\bigcap_{i=1}^{\infty} A_{i}\right) \Leftrightarrow f(x) \in \bigcap_{i=1}^{\infty} A_{i} \\
& \Leftrightarrow \quad f(x) \in A_{i} \text { for all } i \geq 1 \\
& \Leftrightarrow x \in f^{-1}\left(A_{i}\right) \text { for all } i \geq 1 \\
& \Leftrightarrow x \in \bigcap_{i=1}^{\infty} f^{-1}\left(A_{j}\right) .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
x & \in f^{-1}\left(A^{c}\right) \Leftrightarrow f(x) \in A^{c} \\
& \Leftrightarrow f(x) \notin A \\
& \Leftrightarrow x \notin f^{-1}(A) \\
& \Leftrightarrow x \in\left(f^{-1}(A)\right)^{c} .
\end{aligned}
$$

24) a) Let \mathcal{G} be the σ-field generated by the intervals $[-\infty, c)$. Then $\mathbb{R}^{*} \backslash[-\infty, c)=$ $[c, \infty] \in \mathcal{G}$ for all $c \in \mathbb{R}$. Thus $[-\infty, d) \cap[c, \infty]=[c, d) \in \mathcal{G}$ for all $c, d \in \mathbb{R}$.

So \mathcal{G} must contain the smallest σ-field containing $[c, d)$ for all $c, d \in \mathbb{R}$, which from question 14 we know to be \mathcal{B}.

Also \mathcal{G} contains $\{+\infty\}=\bigcap_{n \geq 1}[n,+\infty]$ and $\{-\infty\}=\bigcap_{n \geq 1}[-\infty,-n)$.
Hence \mathcal{G} contains the smallest σ-field containing \mathcal{B} and $\{-\infty,+\infty\}$, that is, \mathcal{B}^{*}. So $\mathcal{B}^{*} \subseteq \mathcal{G}$.

For the reverse set inclusion note that trivially each $[-\infty, c)=\bigcup_{n>1}[-n, c) \cup$ $\{-\infty\} \in \mathcal{B}^{*}$. So \mathcal{B}^{*}, a σ-field, contains the smallest such σ-field containing these $[-\infty, c)$, i.e. $\mathcal{G} \subseteq \mathcal{B}^{*}$.

Hence $\mathcal{G}=\mathcal{B}^{*}$.
b) Just repeat the proof of Theorem 3.3 in the notes. So let \mathcal{A} be the collection of all intervals of the form $[-\infty, c)$. So part (a) implies that $\sigma(\mathcal{A})=$ \mathcal{B}^{*}.

$$
\begin{array}{rlll}
f^{-1}\left(\mathcal{B}^{*}\right) \subseteq \mathcal{F} & \text { iff } & f^{-1}(\sigma(\mathcal{A})) \subseteq \mathcal{F} & \\
& \text { iff } & \sigma\left(f^{-1}(\mathcal{A})\right) \subseteq \mathcal{F} & \text { by Lemma 3.2, } \\
& \text { iff } & f^{-1}(\mathcal{A}) \subseteq \mathcal{F} & \text { since } \mathcal{F} \text { is a } \sigma \text {-field, (see question 13) } \\
& \text { iff } & f^{-1}([-\infty, c)) \subseteq \mathcal{F} & \text { for all } c \in \mathbb{R}, \text { by definition of } \mathcal{A} \\
& \text { iff } & \{x: f(x)<c\} \in \mathcal{F} & \text { for all } c \in \mathbb{R} .
\end{array}
$$

25) Recall the definition that $\alpha=\inf x_{i}$ if, and only if, $\alpha \leq x_{i}$ for all i and, given $\varepsilon>0$, there exists j such that $\alpha \leq x_{j}<\alpha+\varepsilon$. Yet this holds if, and only if, $-\alpha \geq-x_{i}$ for all i and, given $\varepsilon>0$ there exists j such that $-\alpha \geq-x_{j}<-\alpha-\varepsilon$, which is simply the definition that $-\alpha=\sup \left(-x_{i}\right)$.

Hence $-\inf x_{i}=\sup \left(-x_{i}\right)$. Thus

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(-x_{n}\right) & =\lim _{n \rightarrow \infty}\left\{\sup _{r \geq n}\left(-x_{r}\right)\right\} \\
& =\lim _{n \rightarrow \infty}\left\{-\inf _{r \geq n} x_{r}\right\} \\
& =-\lim _{n \rightarrow \infty}\left\{\inf _{r \geq n} x_{r}\right\} \\
& =-\liminf _{n \rightarrow \infty} x_{n}
\end{aligned}
$$

26) a) The negation of the given expression is

$$
\begin{aligned}
\neg\left(\exists N \geq 1: \forall n \geq N, x \notin A_{n}\right) & \equiv \forall N \geq 1, \neg\left(\forall n \geq N, x \notin A_{n}\right) \\
& \equiv \forall N \geq 1, \exists n \geq N, \neg\left(x \notin A_{n}\right) \\
& \equiv \forall N \geq 1, \exists n \geq N, x \in A_{n} \\
& \equiv \forall N \geq 1, x \in \bigcup_{n \geq N} A_{n} \\
& \equiv x \in \bigcup_{N \geq 1} \bigcup_{n \geq N} A_{n} \\
& \equiv x \in \limsup _{n \rightarrow \infty} A_{n} .
\end{aligned}
$$

So $x \in \lim \sup _{n \rightarrow \infty} A_{n}$ if, and only if, it is not the case that x is in only finitely many A_{n}, that is, x is in infinitely many A_{n}. Thus

$$
\limsup _{n \rightarrow \infty} A_{n}=\left\{x: x \in A_{n} \text { for infinitely many } n\right\} .
$$

(b) This time we note that $x \in A_{n}$ for all but finitely many n if, and only if, there exists N such that $x \in A_{n}$ for all $n \geq N$. That is

$$
\begin{aligned}
x & \in A_{n} \text { for all but finitely many } n \\
& \equiv \exists N \geq 1: \forall n \geq N x \in A_{n} \\
& \equiv \exists N \geq 1 x \in \bigcap_{n \geq N} A_{n} \\
& \equiv x \in \bigcup_{N \geq 1} \bigcap_{n \geq N} A_{n} \\
& \equiv x \in \liminf _{n \rightarrow \infty} A_{n} .
\end{aligned}
$$

Thus

$$
\liminf _{n \rightarrow \infty} A_{n}=\left\{x: x \in A_{n} \text { for all but finitely many } n\right\} .
$$

(c) Assume $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq A_{4} \subseteq \ldots$. Trivially we have

$$
\limsup _{n \rightarrow \infty} A_{n} \text { and } \liminf _{n \rightarrow \infty} A_{n} \subseteq \bigcup_{k=1}^{\infty} A_{k}
$$

If now $x \in \bigcup_{k=1}^{\infty} A_{k}$ then $x \in A_{\ell}$ for some $l \geq 1$. Then $x \in A_{k}$ for all $k \geq l$, that is, $x \in A_{n}$ for infinitely many n and so $x \in \lim \sup _{n \rightarrow \infty} A_{n}$. Also, x could not be an element only of sets A_{k} with $k<\ell$ in which case $x \in A_{n}$ for all but finitely many n and so $x \in \liminf _{n \rightarrow \infty} A_{n}$. Thus we have

$$
\bigcup_{k=1}^{\infty} A_{k} \subseteq \limsup _{n \rightarrow \infty} A_{n} \text { and } \liminf _{n \rightarrow \infty} A_{n}
$$

Hence we get equality.
(d) Assume that $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq A_{4} \supseteq \ldots$. If $x \in \bigcap_{k=1}^{\infty} A_{k}$ then $x \in A_{k}$ for all k and so we have both that $x \in A_{n}$ for infinitely many n and $x \in A_{n}$ for all but finitely many n. Thus $x \in \limsup _{n \rightarrow \infty} A_{n}$ and $x \in \liminf _{n \rightarrow \infty} A_{n}$. Hence

$$
\bigcup_{k=1}^{\infty} A_{k} \subseteq \limsup _{n \rightarrow \infty} A_{n} \text { and } \liminf _{n \rightarrow \infty} A_{n}
$$

which leads to equality as before.
(e)

$$
\begin{aligned}
\left(\limsup _{n \rightarrow \infty} A_{n}\right)^{c} & =\left(\bigcap_{N \geq 1} \bigcup_{n \geq N} A_{n}\right)^{c}=\bigcup_{N \geq 1}\left(\bigcup_{n \geq N} A_{n}\right)^{c} \\
& =\bigcup_{N \geq 1} \bigcap_{n \geq N} A_{n}^{c}=\liminf _{n \rightarrow \infty}^{c} A_{n}^{c}
\end{aligned}
$$

27) So $A_{n}=(-1 / n, 1]$ if n odd and $A_{n}=(-1,1 / n]$ if n even.

If $x \in A_{n}$ for all but finitely many n then $x \in(-1 / n, 1]$ for all sufficiently large odd n, in which case we must have $x \in[0,1]$. Also $x \in(-1,1 / n]$ for all sufficiently large even n, in which case we must have $x \in(-1,0]$. Hence the only possibility is $x=0$. Since $0 \in(-1 / n, 1]$ and $(-1,1 / n]$ for all n we have $0 \in \liminf _{n \rightarrow \infty} A_{n}$. Hence $\liminf _{n \rightarrow \infty} A_{n}=\{0\}$.

Consider now $\lim \sup _{n \rightarrow \infty} A_{n}$. If $x \in A_{n}$ for infinitely many n then perhaps $x \in(-1 / n, 1]$ for an infinite collection of odd n in which case $x \in[0,1]$. Or perhaps $x \in(-1,1 / n]$ for an infinite collection of even n in which case $x \in(-1,0]$. Hence all points in $(-1,1]$ could lie in $\lim \sup _{n \rightarrow \infty} A_{n}$. Since $A_{n} \subseteq(-1,1]$ for all n there is no chance of any more points in $\lim \sup _{n \rightarrow \infty} A_{n}$. Hence $\lim \sup _{n \rightarrow \infty} A_{n}=(-1,1]$.
28) Let $E_{1}=2 \mathbb{N}, E_{2}=4 \mathbb{N}, E_{3}=8 \mathbb{N}, E_{4}=16 \mathbb{N}, \ldots$, so in general $E_{n}=2^{n} \mathbb{N}$. Then, given any $m \in \mathbb{Z}$, when $2^{n}>m$ we find that $m \notin 2^{n} \mathbb{N}$. Hence $\bigcap_{n \geq 1} E_{n}=\phi$ and so $\mu\left(\bigcap_{n \geq 1} E_{n}\right)=0$, Yet $\mu\left(E_{n}\right)=\infty$ for all n and so $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right) \neq \mu\left(\bigcap_{n \geq 1} E_{n}\right)$.
29) The hint given is to use

Lemma 4.1 If $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$ are in \mathcal{F} and $A=\bigcup_{n=1}^{\infty} A_{n}$ then

$$
\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)
$$

The present example on a decreasing sequence can be converted to this lemma concerning increasing sequences by noting that $E_{1} \supseteq E_{2} \supseteq E_{3} \supseteq$ $E_{4} \supseteq \ldots$ means that

$$
E_{1} \backslash E_{2} \subseteq E_{1} \backslash E_{3} \subseteq E_{1} \backslash E_{4} \subseteq \ldots
$$

Hence, by Lemma 4.1,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu\left(E_{1} \backslash E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty}\left(E_{1} \backslash E_{n}\right)\right) . \tag{a}
\end{equation*}
$$

Note that since $\mu\left(E_{1}\right)<\infty$ and $E_{n} \subseteq E_{1}$ we can say that $\mu\left(E_{1} \backslash E_{n}\right)=$ $\mu\left(E_{1}\right)-\mu\left(E_{n}\right)$ (this would not necessarily hold if the sets had infinite measure) while

$$
\begin{aligned}
\bigcup_{n=1}^{\infty}\left(E_{1} \backslash E_{n}\right) & =\bigcup_{n=1}^{\infty}\left(E_{1} \cap E_{n}^{c}\right)=E_{1} \cap \bigcup_{n=1}^{\infty} E_{n}^{c} \\
& =E_{1} \cap\left(\bigcap_{n=1}^{\infty} E_{n}\right)^{c}=E_{1} \backslash\left(\bigcap_{n=1}^{\infty} E_{n}\right) .
\end{aligned}
$$

And so

$$
\mu\left(\bigcup_{n=1}^{\infty}\left(E_{1} \backslash E_{n}\right)\right)=\mu\left(E_{1} \backslash\left(\bigcap_{n=1}^{\infty} E_{n}\right)\right)=\mu\left(E_{1}\right)-\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right) .
$$

Substituting into (a) gives

$$
\lim _{n \rightarrow \infty}\left(\mu\left(E_{1}\right)-\mu\left(E_{n}\right)\right)=\mu\left(E_{1}\right)-\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)
$$

which gives the stated result.
30) (a) Throughout this question $F(a-)$ will denote the limit from the left, i.e. $\lim _{\delta \rightarrow 0, \delta>0} F(a-\delta)$.

$$
\begin{aligned}
\mu_{F}([a, b]) & =\mu_{F}\left(\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, b\right]\right) \\
& =\lim _{n \rightarrow \infty} \mu_{F}\left(\left(a-\frac{1}{n}, b\right]\right) \quad \text { by question 29, } \\
& =\lim _{n \rightarrow \infty}\left(F(b)-F\left(a-\frac{1}{n}\right)\right) \\
& =F(b)-F(a-) . \\
& \begin{aligned}
\mu_{F}([a, b))= & \mu_{F}\left(\bigcup_{n=1}^{\infty}\left[a, b-\frac{1}{n}\right]\right) \\
= & \lim _{n \rightarrow \infty} \mu_{F}\left(\left[a, b-\frac{1}{n}\right]\right) \quad \text { by Lemma 4.1, } \\
= & \lim _{n \rightarrow \infty}\left(F\left(\left(b-\frac{1}{n}\right)-F(a-)\right) \quad\right. \text { by previous part } \\
= & F(b-)-F(a-) . \\
& =\lim _{n \rightarrow \infty} \mu_{F}\left(\left(a, b-\frac{1}{n}\right]\right) \quad \text { by Lemma 4.1, } \\
& =\lim _{n \rightarrow \infty}\left(F\left(b-\frac{1}{n}\right)-F(a)\right) \\
& =F(b-)-F(a) .
\end{aligned} \quad . \quad
\end{aligned}
$$

b) Try

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } 0 \leq x<1 \\ 2 & \text { if } 1 \leq x\end{cases}
$$

Then, using the results from part (a),

$$
\begin{aligned}
\mu_{F}((0,1)) & =F(1-)-F(0)=1-1=0 \\
F(1)-F(0) & =2-1=1 \\
\mu_{F}([0,1]) & =F(1)-F(0-)=2-0=2
\end{aligned}
$$

Hence

$$
\mu_{F}((0,1))<F(1)-F(0)<\mu_{F}([0,1])
$$

as required.
31)(a)

$$
\mu_{F}(\{2\})=\mu_{F}([2,2])=F(2)-F(2-)=9-6=3
$$

(b)

$$
\mu_{F}([-1 / 2,3))=F(3-)-F(-1 / 2-)=9-\left(1-\frac{1}{2}\right)=7 \frac{1}{2} .
$$

(c)

$$
\begin{aligned}
\mu_{F}((-1,0] \cup(1,2)) & =\mu_{F}((-1,0])+\mu_{F}((1,2)) \quad \text { since } \mu_{F} \text { is additive } \\
& =(F(0)-F(-1))+(F(2-)-F(1)) \\
& =(2-0)+(6-3) \\
& =5
\end{aligned}
$$

d)

$$
\begin{aligned}
\mu_{F}([0,1 / 2) \cup(1,2]) & =\mu_{F}([0,1 / 2))+\mu_{F}((1,2]) \\
& =(F(1 / 2-)-F(0-))+(F(2)-F(1)) \\
& =\left(2 \frac{1}{4}-1\right)+(9-3) \\
& =7 \frac{1}{4} .
\end{aligned}
$$

e)

$$
\begin{aligned}
\left\{x:|x|+2 x^{2}>1\right\} & =\{x: x>1 / 2\} \cup\{x: x<-1 / 2\} \\
& =\bigcup_{n \geq 1}\left(\frac{1}{2}, n\right) \cup \bigcup_{m \geq 1}\left(-m, \frac{1}{2}\right)
\end{aligned}
$$

So question 29 implies that

$$
\mu_{F}\left(\left\{x:|x|+2 x^{2}>1\right\}\right)=\lim _{n \rightarrow \infty} \mu_{F}\left(\left(\frac{1}{2}, n\right)\right)+\lim _{m \rightarrow \infty} \mu_{F}\left(\left(-m, \frac{1}{2}\right)\right)
$$

But

$$
\mu_{F}\left(\left(\frac{1}{2}, n\right)\right)=F(n-)-F(1 / 2)=9-2 \frac{1}{4}=6 \frac{3}{4}, \text { for all } n \geq 3
$$

And

$$
\mu_{F}\left(\left(-m, \frac{1}{2}\right)\right)=F(-1 / 2-)-F(-m)=\frac{1}{2}-0=\frac{1}{2}, \text { for all } m \geq 1
$$

Hence

$$
\mu_{F}\left(\left\{x:|x|+2 x^{2}>1\right\}\right)=7 \frac{1}{4} .
$$

