
21) Let E ∈ L be given. Assume first that µ(E) is finite. We have

µ(E) = µ∗(E) = inf
∞∑
i=1

µ(Ai)

over all covers E ⊆ ⋃∞
i=1 Ai, with Ai ∈ E . Given ε > 0 choose a cover {Ai}i≥1

such that

µ(E) ≤
∞∑
i=1

µ(Ai) < µ(E) +
ε

2
.

Yet by Theorem 1.7 we know that each

Ai =

ni⋃
j=1

(aij, bij]

a disjoint union which in turn can be covered by open intervals as in

⊆
ni⋃

j=1

(
aij, bij +

ε

2i+1ni

)
.

Note that we have used the common trick of weighting ε so we get convergent
series later. Choose

G =
∞⋃
i=1

ni⋃
j=1

(
aij, bij +

ε

2i+1ni

)
∈ U ,

which is a cover for E. Then

µ(G) ≤
∞∑
i=1

ni∑
j=1

µ

((
aij, bij +

ε

2i+1ni

))
since µ is subadditive

=
∞∑
i=1

ni∑
j=1

(
µ((aij, bij]) +

ε

2i+1ni

)

since Lebesgue measure of an interval is simply it’s length,
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=
∞∑
i=1

ni∑
j=1

µ((aij, bij]) +
ε

2

=
∞∑
i=1

µ(Ai) +
ε

2

since the cover of Ai is by a disjoint union of (aij, bij]

<
(
µ(E) +

ε

2

)
+

ε

2
= µ(E) + ε.

Hence, since E ⊆ G and the measures are finite we find that µ(G \E) =
µ(G)− µ(E) < ε.

Assume now that µ(E) is infinite.
Decompose E =

⋃
n∈ZEn where En = E∩ [n, n+1). Then µ(En) is finite

and we can follow the argument above but with ε replaced by ε/2|n|+2 to find
Gn ∈ U with En ⊆ Gn and µ(Gn\En) < ε/2|n|+2. Then set G =

⋃
n∈ZGn ∈ U

when

µ(G \ E) = µ

(⋃

n∈Z
(Gn \ E)

)
≤

∑

n∈Z
µ(Gn \ E)

≤
∑

n∈Z
µ(Gn \ En) ≤

∑

n∈Z

ε

2|n|+2

=
ε

22
+ 2

∑
n≥1

ε

2n+2
=

ε

22
+ 2

ε

22

< ε.

Hence in both cases we can find G.

(*Note in the second part of the proof it was important that we could
decompose R =

⋃
n∈Z[n, n + 1), where each [n, n + 1) has finite measure, i.e.

(R,L, µ) is σ-finite.)

22) The result is trivial if c = 0 so we may assume that c 6= 0.

(i) If I ∈ P then I = (a, b] for some a and b and

µ(cI) = µ((ca, cb]) if c > 0

= cb− ca

= c(b− a) = cµ(I).
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If c < 0 then

µ(cI) = µ([cb, ca))

= ca− cb

= −c(b− a) = −cµ(I).

So we see that both cases can be written as µ(cI) = |c|µ(I).

(ii) If E ∈ E then, by Theorem 1.7, E =
⋃n

i=1 Ii, a disjoint union of Ii ∈ P .
By definition of the extended measure given in the proof of Theorem 2.2 we
have µ(E) =

∑n
i=1 µ(Ii) which by part (i) gives µ(cE) = |c|µ(E).

(iii) We now look at the outer measure µ∗. Let A ⊆ R. Then there is a map
between the covers {Ei}i≥1 ⊆ E of A and the covers {E ′

i}i≥1 ⊆ E of cA given
by Ei → cEi and E ′

i → 1
c
E ′

i. By (ii) we have that µ(Ei) = 1
|c|µ(cEi) and

µ(E ′
i) = |c|µ(1

c
E ′

i) and so

{∑
i

µ(Ei) : A ⊆
⋃
i

Ei, Ei ∈ E
}

=

{
1

|c|
∑

i

µ(cEi) : cA ⊆
⋃
i

cEi, Ei ∈ E
}

=

{
1

|c|
∑

i

µ(E ′
i) : cA ⊆

⋃
i

E ′
i, E

′
i ∈ E

}
.

The infimum of the first and third sets are equal, that is,

µ∗(A) = inf
∑

i

µ(Ei) = inf
1

|c|
∑

i

µ(E ′
i) =

1

|c|µ
∗(cA).

Hence µ∗(cA) = |c|µ∗(A).

(iv) Let E ∈ L and x ∈ R be given. Take any test set A ⊆ R. Apply the
definition of measurable set to E with test set 1

c
A to get

µ∗
(

1

c
A

)
= µ∗

((
1

c
A

)
∩ E

)
+ µ∗

((
1

c
A

)
∩ Ec

)

= µ∗
(

1

c
(A ∩ cE)

)
+ µ∗

(
1

c
(A ∩ (cE)c)

)
.

By (iii) this gives

1

|c|µ
∗ (A) =

1

|c|µ
∗ (A ∩ cE) +

1

|c|µ
∗ (A ∩ (cE)c) ,
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in which case

µ∗ (A) = µ∗ (A ∩ cE) + µ∗ (A ∩ (cE)c)

for all test sets A ⊆ R. Hence cE ∈ L. Of course µ∗ = µ on L and so (iii)
gives

µ(cE) = µ∗(cE) = |c|µ∗(E) = |c|µ(E)

for all E ∈ L.

23) Simply note that

x ∈ f−1

( ∞⋃
i=1

Ai

)
⇔ f(x) ∈

∞⋃
i=1

Ai

⇔ f(x) ∈ Aj for some j ≥ 1

⇔ x ∈ f−1(Aj) for some j ≥ 1

⇔ x ∈
∞⋃
i=1

f−1(Aj).

Similarly

x ∈ f−1

( ∞⋂
i=1

Ai

)
⇔ f(x) ∈

∞⋂
i=1

Ai

⇔ f(x) ∈ Ai for all i ≥ 1

⇔ x ∈ f−1(Ai) for all i ≥ 1

⇔ x ∈
∞⋂
i=1

f−1(Aj).

Finally,

x ∈ f−1(Ac) ⇔ f(x) ∈ Ac

⇔ f(x) /∈ A

⇔ x /∈ f−1(A)

⇔ x ∈ (
f−1(A)

)c
.

24) a) Let G be the σ-field generated by the intervals [−∞, c). Then R∗\[−∞, c) =
[c,∞] ∈ G for all c ∈ R. Thus [−∞, d) ∩ [c,∞] = [c, d) ∈ G for all c, d ∈ R.
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So G must contain the smallest σ-field containing [c, d) for all c, d ∈ R, which
from question 14 we know to be B.

Also G contains {+∞} =
⋂

n≥1[n, +∞] and {−∞} =
⋂

n≥1[−∞,−n).
Hence G contains the smallest σ-field containing B and {−∞, +∞}, that

is, B∗. So B∗ ⊆ G.

For the reverse set inclusion note that trivially each [−∞, c) =
⋃

n≥1[−n, c)∪
{−∞} ∈ B∗. So B∗, a σ-field, contains the smallest such σ-field containing
these [−∞, c), i.e. G ⊆ B∗.

Hence G = B∗.
b) Just repeat the proof of Theorem 3.3 in the notes. So let A be the
collection of all intervals of the form [−∞, c). So part (a) implies that σ(A) =
B∗.

f−1(B∗) ⊆ F iff f−1(σ(A)) ⊆ F
iff σ(f−1(A)) ⊆ F by Lemma 3.2,

iff f−1(A) ⊆ F since F is a σ-field, (see question 13)

iff f−1([−∞, c)) ⊆ F for all c ∈ R, by definition of A
iff {x : f(x) < c} ∈ F for all c ∈ R.

25) Recall the definition that α = inf xi if, and only if, α ≤ xi for all i and,
given ε > 0, there exists j such that α ≤ xj < α + ε. Yet this holds if,
and only if, −α ≥ −xi for all i and, given ε > 0 there exists j such that
−α ≥ −xj < −α− ε, which is simply the definition that −α = sup(−xi).

Hence − inf xi = sup(−xi). Thus

lim sup
n→∞

(−xn) = lim
n→∞

{
sup
r≥n

(−xr)

}

= lim
n→∞

{
− inf

r≥n
xr

}

= − lim
n→∞

{
inf
r≥n

xr

}
.

= −lim inf
n→∞

xn.

26) a) The negation of the given expression is

5



¬ (∃N ≥ 1 : ∀n ≥ N, x /∈ An) ≡ ∀N ≥ 1,¬ (∀n ≥ N, x /∈ An)

≡ ∀N ≥ 1,∃n ≥ N,¬ (x /∈ An)

≡ ∀N ≥ 1,∃n ≥ N, x ∈ An

≡ ∀N ≥ 1, x ∈
⋃

n≥N

An

≡ x ∈
⋂
N≥1

⋃
n≥N

An

≡ x ∈ lim sup
n→∞

An.

So x ∈ lim supn→∞ An if, and only if, it is not the case that x is in only
finitely many An, that is, x is in infinitely many An. Thus

lim sup
n→∞

An = {x : x ∈ An for infinitely many n} .

(b) This time we note that x ∈ An for all but finitely many n if, and only if,
there exists N such that x ∈ An for all n ≥ N . That is

x ∈ An for all but finitely many n

≡ ∃N ≥ 1 : ∀n ≥ N x ∈ An

≡ ∃N ≥ 1 x ∈
⋂

n≥N

An

≡ x ∈
⋃
N≥1

⋂
n≥N

An

≡ x ∈ lim inf
n→∞

An.

Thus

lim inf
n→∞

An = {x : x ∈ An for all but finitely many n} .

(c) Assume A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ ... . Trivially we have

lim sup
n→∞

An and lim inf
n→∞

An ⊆
∞⋃

k=1

Ak.

If now x ∈ ⋃∞
k=1 Ak then x ∈ A` for some l ≥ 1. Then x ∈ Ak for all

k ≥ l, that is, x ∈ An for infinitely many n and so x ∈ lim supn→∞ An. Also,
x could not be an element only of sets Ak with k < ` in which case x ∈ An

for all but finitely many n and so x ∈ lim infn→∞ An. Thus we have
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∞⋃

k=1

Ak ⊆ lim sup
n→∞

An and lim inf
n→∞

An.

Hence we get equality.

(d) Assume that A1 ⊇ A2 ⊇ A3 ⊇ A4 ⊇ ... . If x ∈ ⋂∞
k=1 Ak then x ∈ Ak for

all k and so we have both that x ∈ An for infinitely many n and x ∈ An for
all but finitely many n. Thus x ∈ lim supn→∞ An and x ∈ lim infn→∞ An.
Hence

∞⋃

k=1

Ak ⊆ lim sup
n→∞

An and lim inf
n→∞

An

which leads to equality as before.
(e)

(
lim sup

n→∞
An

)c

=

( ⋂
N≥1

⋃
n≥N

An

)c

=
⋃
N≥1

( ⋃
n≥N

An

)c

=
⋃
N≥1

⋂
n≥N

Ac
n = lim inf

n→∞
Ac

n.

27) So An = (−1/n, 1] if n odd and An = (−1, 1/n] if n even.

If x ∈ An for all but finitely many n then x ∈ (−1/n, 1] for all sufficiently
large odd n, in which case we must have x ∈ [0, 1]. Also x ∈ (−1, 1/n] for all
sufficiently large even n, in which case we must have x ∈ (−1, 0]. Hence the
only possibility is x = 0. Since 0 ∈ (−1/n, 1] and (−1, 1/n] for all n we have
0 ∈ lim infn→∞ An. Hence lim infn→∞ An = {0}.

Consider now lim supn→∞ An. If x ∈ An for infinitely many n then per-
haps x ∈ (−1/n, 1] for an infinite collection of odd n in which case x ∈ [0, 1].
Or perhaps x ∈ (−1, 1/n] for an infinite collection of even n in which case
x ∈ (−1, 0]. Hence all points in (−1, 1] could lie in lim supn→∞ An. Since
An ⊆ (−1, 1] for all n there is no chance of any more points in lim supn→∞ An.
Hence lim supn→∞ An = (−1, 1].

28) Let E1 = 2N, E2 = 4N, E3 = 8N, E4 = 16N, ..., so in general En = 2nN.
Then, given any m ∈ Z, when 2n > m we find that m /∈ 2nN. Hence⋂

n≥1 En = φ and so µ
(⋂

n≥1 En

)
= 0, Yet µ(En) = ∞ for all n and so

limn→∞ µ(En) 6= µ
(⋂

n≥1 En

)
.

29) The hint given is to use
Lemma 4.1 If A1 ⊆ A2 ⊆ A3 ⊆ ... are in F and A =

⋃∞
n=1 An then
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lim
n→∞

µ(An) = µ(A).

The present example on a decreasing sequence can be converted to this
lemma concerning increasing sequences by noting that E1 ⊇ E2 ⊇ E3 ⊇
E4 ⊇ ... means that

E1 \ E2 ⊆ E1 \ E3 ⊆ E1 \ E4 ⊆ ... .

Hence, by Lemma 4.1,

lim
n→∞

µ(E1 \ En) = µ

( ∞⋃
n=1

(E1 \ En)

)
. (a)

Note that since µ(E1) < ∞ and En ⊆ E1 we can say that µ(E1 \ En) =
µ(E1)−µ(En) (this would not necessarily hold if the sets had infinite measure)
while

∞⋃
n=1

(E1 \ En) =
∞⋃

n=1

(E1 ∩ Ec
n) = E1 ∩

∞⋃
n=1

Ec
n

= E1 ∩
( ∞⋂

n=1

En

)c

= E1 \
( ∞⋂

n=1

En

)
.

And so

µ

( ∞⋃
n=1

(E1 \ En)

)
= µ

(
E1 \

( ∞⋂
n=1

En

))
= µ(E1)− µ

( ∞⋂
n=1

En

)
.

Substituting into (a) gives

lim
n→∞

(µ(E1)− µ(En)) = µ(E1)− µ

( ∞⋂
n=1

En

)

which gives the stated result.

30) (a) Throughout this question F (a−) will denote the limit from the left,
i.e. limδ→0,δ>0 F (a− δ).
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µF ([a, b]) = µF

( ∞⋂
n=1

(
a− 1

n
, b

]
)

= lim
n→∞

µF

((
a− 1

n
, b

])
by question 29,

= lim
n→∞

(
F (b)− F

(
a− 1

n

))

= F (b)− F (a−).

µF ([a, b)) = µF

( ∞⋃
n=1

[
a, b− 1

n

]
)

= lim
n→∞

µF

([
a, b− 1

n

])
by Lemma 4.1,

= lim
n→∞

(
F (

(
b− 1

n

)− F (a−)
)

by previous part

= F (b−)− F (a−).

µF ((a, b)) = µF

( ∞⋃
n=1

(
a, b− 1

n

]
)

= lim
n→∞

µF

((
a, b− 1

n

])
by Lemma 4.1,

= lim
n→∞

(
F

(
b− 1

n

)− F (a)
)

= F (b−)− F (a).

b) Try

F (x) =





0 if x < 0
1 if 0 ≤ x < 1
2 if 1 ≤ x.

Then, using the results from part (a),

µF ((0, 1)) = F (1−)− F (0) = 1− 1 = 0,

F (1)− F (0) = 2− 1 = 1

µF ([0, 1]) = F (1)− F (0−) = 2− 0 = 2.

Hence
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µF ((0, 1)) < F (1)− F (0) < µF ([0, 1])

as required.
31)(a)

µF ({2}) = µF ([2, 2]) = F (2)− F (2−) = 9− 6 = 3.

(b)
µF ([−1/2, 3)) = F (3−)− F (−1/2−) = 9− (

1− 1
2

)
= 71

2
.

(c)

µF ((−1, 0] ∪ (1, 2)) = µF ((−1, 0]) + µF ((1, 2)) since µF is additive

= (F (0)− F (−1)) + (F (2−)− F (1))

= (2− 0) + (6− 3)

= 5.

d)

µF ([0, 1/2) ∪ (1, 2]) = µF ([0, 1/2)) + µF ((1, 2])

= (F (1/2−)− F (0−)) + (F (2)− F (1))

=
(
21

4
− 1

)
+ (9− 3)

= 71
4
.

e)

{
x : |x|+ 2x2 > 1

}
= {x : x > 1/2} ∪ {x : x < −1/2}
=

⋃
n≥1

(
1
2
, n

) ∪
⋃
m≥1

(−m, 1
2

)
.

So question 29 implies that

µF (
{
x : |x|+ 2x2 > 1

}
) = lim

n→∞
µF

((
1
2
, n

))
+ lim

m→∞
µF

((−m, 1
2

))
.

But

µF

((
1
2
, n

))
= F (n−)− F (1/2) = 9− 21

4
= 63

4
, for all n ≥ 3.

And
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µF

((−m, 1
2

))
= F (−1/2−)− F (−m) = 1

2
− 0 = 1

2
, for all m ≥ 1.

Hence

µF (
{
x : |x|+ 2x2 > 1

}
) = 71

4
.
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