13) (=) Assume that A C F. Then o(A) is the intersection of all o-fields
containing A and so is contained in any such o-field. In particular, o(A) C F.
(<) Assume that o(A) C F. Trivially A C 0(A) and so A C F.

14) Let B = B((a, b]) be the o-field generated by P, known as the Borel sets
of R.

(1) B(la, b]) = B((a, b]).

Note that

0,0 = ) (a— %b] e B((a, b))

n>1

since a o-field is closed under countable intersections. So B((a,b]) is a o-
field containing all [a,b] while B([a,b]) is the smallest such o-field. Hence
B([a,b]) C B((a,b]). Similarly

(a,0] = {a+%,b} € B([a, b)),

n>1

giving B((a, b]) € B([a, b]).
Hence B([a,b]) = B((a,b]).

(ii) To prove B([a, b)) = B((a, b]) it suffices, by part (i) to prove that B([a, b)) =
B([a,b]). This follows as in (i) from the two equalities

la.0) = [a,b—ﬂ

n>1

and

la,0] = ) {a,bjt%).

n>1

(iii) You might be happy with {z} = [z, x] € B by (ii) or you could write

{z} =) (m—%er%] €B.

n>1

Q=J{r}

reQ
a countable union of sets that by (iii) are in B. Hence Q € B5.

(v) Recall that o-fields are closed under complements so



{irrationals} = Q¢ € B.

(vi) Let A € co-finite topology. Then either A = ¢ € B or A€ is finite. In
the second case we can write

A = {xlyx%“wmr}
i=1

Thus A = (A°)° € B.
Hence the co-finite topology on R is a subset of B.

15) At every point z( of discontinuity we have

lim F(z) < lim F(z) = F(zo).
<o v>a0

From the first year we know that between any two real numbers we can
find a rational, so we can find a rational r = r(x) satisfying

lim F(z) <r < lim F(z) = F(zo).
:L“<I(()) :t:>xg

Now if z; is a point of discontinuity which larger than zy then

r(zo) < F(xo) < lim F(x) since F' is monotonic increasing,
z<xf
< r(z) < lim F(z).
x>x%

So the sequence of rationals we choose, r(z;), are distinct. The collec-
tion of all rationals is countable so the collection of discontinuities must be
countable.

16) If y > x then

since the p, > 0. So F is increasing. Also

lim F(y) — F(z) = lim Z Dn.

y>z y>x x<n<y



But if y is sufficiently close to = then (z,y] never contains an integer. To
see this assume first that x is an integer, when if x < y < x + 1 then (z,y]
does not contain an integer. Otherwise x is not an integer. But if n is the
smallest integer x < n then if y < n also we see again that (z,y| does not
contain an integer. So ) <n<y Pn = 0 it y is sufficiently is close to x. Thus

liny F(y) = F(z),
Z31/>:):
and so [ is right continuous. Thus F' is a distribution function.

If we had n < x instead of n < x in the definition of F'(x) then in the
above argument we would have a sum over integers in [z,y). If x were an
integer then this interval would always contain integers however close y was
to . Thus F' (z) would not necessarily be right continuous. (But what about
being left continuous?)

17) To check that u is additive we need to verify that if given any collection
of disjoint sets {A;}1<;<n C C such that (Y, A; € C then

H (UAz) = ZU(A

But the condition here is satisfied in the present example only when
Ay =1[0,1/4) and Ay = [1/4,3/4) for then A; U Ay = [0,3/4) € C. So we
check that

(AU Ay) = pu([0,3/4)) =

while

p(Ar) + p(Az) = ([0, 1/4)) + pu([1/4,3/4)) = 2+ 2 = 4.
Equality means that p is additive on C.
The ring generated by C must be closed under unions and intersections. So

we start with C and add in the sets formed by taking unions and differences.
This leads to

¢, X, [0,1/4), [0,1/2),

[0,3/4), [1/4,3/4), [1/4,1/2), [1/2,3/4),

[1/4,1), [1/2,1), 3/4,1), [0,1/4) U[3/4,1),
0,1/2) U[3/4,1), [0,1/4)U[1/2,3/4), [0,1/4) U[L/2,1), [1/4,1/2)U [3/4,1).

This is the smallest collection you can make from C by adding in unions
and differences. You should check that this is a ring in which case it is the
smallest ring containing C and so the ring generated by C.
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In fact the ring consists of all possible unions of the four intervals

0,1/4), [1/4,1/2), [1/2,3/4), [3/4,1).

In particular we see that our ring will contain 2% elements.
If we can extend u to the ring it should take values on these four intervals.
It is not hard to see from the information given that we must have

u((0,1/4) =2, p([1/4,1/2) =0, u([1/2,3/4)) =2, u(3/4,1)) =0.

Then by additivity every interval in our ring has a measure.

18) To be a semi-ring C has to be closed under intersections while the differ-
ence of two sets from C should be the union of sets from C. By observation the
intersection of any two sets from C lies in C. The only non-trivial difference
we can take is

X\ {2,3} = {1} U {45},
a union of sets from C as required. (I say that all other differences trivial in
that they lie in C.)

To show that p is additive we need to verify the definition repeated in
question 17. In this example there are three collections {A;} C C with
\UJ; Ai € C. This means that we have to check the following three equalities.

p({1}) +p({2,3}) = p({1,2,3}), (a)
p({1}) +p({2,3}) + p({4,5}) = w(X), (b)
p({1,2,3}) + p({4,5}) = wX). (c)

Yet LHS(a) = 1+ 1 = 2 while RHS(a) = 2 so (a) holds. Similarly
LHS(b) =1+ 1+1=3 while RHS(b) = 3 so (b) holds. Finally, (c¢) follows
from (a) and (b). Hence p is additive.

As in the last question we add in all unions and differences of the intervals
in C to get the ring generated by C. Note that in taking unions and differences
we never would expect to split up the pair {2, 3} nor the pair {4,5}. So we
might expect the ring to contain all subsets of {1,{2,3},{4,5}}, a set of
three elements, and so the ring would contain 23 = 8 sets. In fact we find
the ring consists of

9, X, {2,3}, {1},
(4,5}, {1,2,3}, {1}U{4,5}, {2.3}U{4,5).



We extend p to R by defining

p({1}u{4,5}) =2, p({2,3tU{4,5}) =2.
So v is a non-negative and additive. Since X is finite this trivially means

o-additive and so p is a measure.

19) In all cases we need to check the three conditions for A to be an outer
measure.

1. AM¢) =0
2. If E C F then A\(F) < A\(F), (Monotonic)
3. AU A) < DT AA), (countably subadditive).

Note that 1. holds in all three examples so we need only check 2. and 3.

(a) 2. Assume E C F.

If ' = ¢ then necessarily £ = ¢ and so A(E) =0 = A\(F).

If F'# ¢ then A\(F') = 1 which is greater than or equal to any value (i.e.
0 or 1) that A(F) can take.

Hence, in all cases, A\(E) < A(F).

3. Let {A;}i>1 be given. If A; = ¢ for all 4 > 1 then [J® A; = ¢ and so

(04) -0 S

Otherwise there exists m such that A,, # ¢. Then J;° A; # ¢ and so

A <GAZ~> =1=X(4,) < i)\<Ai)

since A > 0.
Hence X is an outer measure.
The A\-measurable sets satisfy

AMA)=ANANE)+ AN E° (1)
for every A C X. So for E to be A\-measurable we need it to satisfy

1= \E) + \(E°),

having put A = X in (1). This can only be satisfied if either £ = ¢ and
E¢# ¢,or E° = ¢ and E # ¢. That is, if either £ = ¢ or F = X. Remember
these are only possible A-measurable sets since (1) should hold for all A not
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just A = X. But we can check that ¢ and X are A\-measurable. Yet ¢ and X
are always A-measurable whatever the problem To see this simply observe
that £ = ¢ in (1) gives A(A) = 0+ A(A) which is true for all A while £ = X
n (1) gives A(A) = A(A) 4+ 0 which again is true for all A.

So the A\-measurable sets are ¢ and X.
b) 2. Assume E C F.

If E = ¢ then A\(E) = 0 which is less than or equal to any value (0,1 or
2) that can be taken by A(F'), so A(F) < A(F).

If $ # F # X then \(E) = 1 but also F' is necessarily not empty. So
AMF)>1=\E).

If £ = X then necessarily F' = X and so A(F) = A(F).

Hence, in all cases, A\(E) < A(F).

3. Let {A;}i>1 be given. If A; = ¢ for all 4 > 1 then | J® A; = ¢ and so

A@Ai):ozim

If there exists m such that A, # ¢ and [J® A; # X then A, # X and so

A <GAi> —1=\(An) gi)\(/l

1

since A > 0. If A,, # ¢ and |J;” A; = X then either A4,, = X or 4,, # X
and there exists k # m with Ay # ¢. In the first case

A (GAZ) —2=\(4,) SiMA)

1

while in the second case

(UA>_2<>\ ) + MAx) < Z)\

Hence in all cases A is sub-additive. Hence A is an outer measure.

As seen in part (a) the sets ¢ and X are Ad-measurable.
Claim There are no other A-measurable sets.
Proof Let ¢ # E # X. So there exist x € F and y ¢ E. Take as a test
set A ={z,y} in (1) above. Then A\(A) = 1 while A(AN E) + A(AN E°) =
A{z}) + A\{y}) = 1+ 1 = 2. So we do not have equality and E is not
A-measurable.

c) 2. Assume F C F.



If F is countable then A(E) = 0 which is less than or equal to any value
(0 or 1) that can be taken by A\(F), so A(E) < A(F).

If £ is uncountable then F' is uncountable so A(F) = 1 = A(F).

Hence, in all cases A\(E) < A\(F).

3. Let {A;}i>1 be given. If A; countable for all i > 1 then [J” A; is
countable and so

(04) -0 S

Otherwise there exists m such that A,, is uncountable. Then J® 4; is
also uncountable and so

A <6Ai> —1=X(A,) < i)\(Ai)

since A > 0. In all cases A (U™ Ai) < D77 A(4;). Thus A is an outer measure.
As in part (a), for E to be A-measurable we need it to satisfy

1 = \(E) + ME°),

having put A = X in (1). This can only be satisfied if either E uncountable
and E°¢ countable, or F° countable and E uncountable. Since X is uncount-
able these are the same as either £ countable or E countable. Remember
these are only possible A-measurable sets since (1) should hold for all A not
just A = X. So we need to check that such sets are A- measurable.

So, for example, let E be countable.

If the test set A is countable then both sides of (1) are 0 and we have
equality.

Assume that the test set A is uncountable. Write A = (ANE°)U(ANE)
and note that A N F is countable since it is a subset of a countable set E.
Thus A uncountable implies that AN E* is uncountable. Thus A(ANE°) =1
in (1). As noted AN E C FE is countable and so A(A N E) = 0. Finally
A(A) = 1 and so we have equality in (1). Thus (1) holds for all test sets A
and so countable E are A-measurable.

The proof for E¢ uncountable is similar.
Hence the A-measurable sets are either ¢ countable or E countable.

20) Recall the definition of being A-measurable as

AMA)=AMANE)+ ANANE° (1)



for every A C X. If we put A = X we are asking that 1 = A\(E) + A\(E°)
for any A-measurable set. Since £ C N, and N is infinite, one of E or E€ is
infinite, i.e. one of A(E) or A(E°) = 1. Thus we need one of the two cases,
AME)=1and A(E) =0 or A(F) =0 and A(E€) = 1. But A(£°) = 0 implies
E¢ = ¢, in which case E = N, while A(E) = 0 implies that £ = ¢. So
the only possible A-measurable sets are N and ¢. As noted in the last two
questions the whole space and the empty set are always A-measurable sets.



