13) (\Rightarrow) Assume that $\mathcal{A} \subseteq \mathcal{F}$. Then $\sigma(\mathcal{A})$ is the intersection of all σ-fields containing \mathcal{A} and so is contained in any such σ-field. In particular, $\sigma(\mathcal{A}) \subseteq \mathcal{F}$. (\Leftarrow) Assume that $\sigma(\mathcal{A}) \subseteq \mathcal{F}$. Trivially $\mathcal{A} \subseteq \sigma(\mathcal{A})$ and so $\mathcal{A} \subseteq \mathcal{F}$.
14) Let $\mathcal{B}=\mathcal{B}((a, b])$ be the σ-field generated by \mathcal{P}, known as the Borel sets of \mathbb{R}.
(i) $\mathcal{B}([a, b])=\mathcal{B}((a, b])$.

Note that

$$
[a, b]=\bigcap_{n \geq 1}\left(a-\frac{1}{n}, b\right] \in \mathcal{B}((a, b])
$$

since a σ-field is closed under countable intersections. So $\mathcal{B}((a, b])$ is a σ field containing all $[a, b]$ while $\mathcal{B}([a, b])$ is the smallest such σ-field. Hence $\mathcal{B}([a, b]) \subseteq \mathcal{B}((a, b])$. Similarly

$$
(a, b]=\bigcup_{n \geq 1}\left[a+\frac{1}{n}, b\right] \in \mathcal{B}([a, b])
$$

giving $\mathcal{B}((a, b]) \subseteq \mathcal{B}([a, b])$.
Hence $\mathcal{B}([a, b])=\mathcal{B}((a, b])$.
(ii) To prove $\mathcal{B}([a, b))=\mathcal{B}((a, b])$ it suffices, by part (i) to prove that $\mathcal{B}([a, b))=$ $\mathcal{B}([a, b])$. This follows as in (i) from the two equalities

$$
[a, b)=\bigcup_{n \geq 1}\left[a, b-\frac{1}{n}\right]
$$

and

$$
[a, b]=\bigcap_{n \geq 1}\left[a, b+\frac{1}{n}\right) .
$$

(iii) You might be happy with $\{x\}=[x, x] \in \mathcal{B}$ by (ii) or you could write

$$
\{x\}=\bigcap_{n \geq 1}\left(x-\frac{1}{n}, x+\frac{1}{n}\right] \in \mathcal{B} .
$$

(iv)

$$
\mathbb{Q}=\bigcup_{r \in \mathbb{Q}}\{r\}
$$

a countable union of sets that by (iii) are in \mathcal{B}. Hence $\mathbb{Q} \in \mathcal{B}$.
(v) Recall that σ-fields are closed under complements so

$$
\{\text { irrationals }\}=\mathbb{Q}^{c} \in \mathcal{B} .
$$

(vi) Let $A \in$ co-finite topology. Then either $A=\phi \in \mathcal{B}$ or A^{c} is finite. In the second case we can write

$$
\begin{aligned}
A^{c} & =\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \\
& =\bigcup_{i=1}^{r}\left\{x_{i}\right\} \in \mathcal{B} .
\end{aligned}
$$

Thus $A=\left(A^{c}\right)^{c} \in \mathcal{B}$.
Hence the co-finite topology on \mathbb{R} is a subset of \mathcal{B}.
15) At every point x_{0} of discontinuity we have

$$
\lim _{\substack{x \rightarrow x_{0} \\ x<x_{0}}} F(x)<\lim _{\substack{x \rightarrow x_{0} \\ x>x_{0}}} F(x)=F\left(x_{0}\right) .
$$

From the first year we know that between any two real numbers we can find a rational, so we can find a rational $r=r\left(x_{0}\right)$ satisfying

$$
\lim _{\substack{x \rightarrow x_{0} \\ x<x_{0}}} F(x)<r<\lim _{\substack{x \rightarrow x_{0} \\ x>x_{0}}} F(x)=F\left(x_{0}\right) .
$$

Now if x_{1} is a point of discontinuity which larger than x_{0} then

$$
\begin{aligned}
r\left(x_{0}\right) & <F\left(x_{0}\right) \leq \lim _{\substack{x \rightarrow x_{1} \\
x<x_{1}}} F(x) \quad \text { since } F \text { is monotonic increasing }, \\
& <r\left(x_{1}\right)<\lim _{\substack{x \rightarrow x_{1} \\
x>x_{1}}} F(x) .
\end{aligned}
$$

So the sequence of rationals we choose, $r\left(x_{i}\right)$, are distinct. The collection of all rationals is countable so the collection of discontinuities must be countable.
16) If $y>x$ then

$$
F(y)-F(x)=\sum_{x<n \leq y} p_{n} \geq 0
$$

since the $p_{n} \geq 0$. So F is increasing. Also

$$
\lim _{\substack{y \rightarrow x \\ y>x}} F(y)-F(x)=\lim _{\substack{y \rightarrow x \\ y>x}} \sum_{\substack{x<n \leq y}} p_{n} .
$$

But if y is sufficiently close to x then $(x, y]$ never contains an integer. To see this assume first that x is an integer, when if $x<y<x+1$ then $(x, y]$ does not contain an integer. Otherwise x is not an integer. But if n is the smallest integer $x<n$ then if $y<n$ also we see again that $(x, y]$ does not contain an integer. So $\sum_{x<n \leq y} p_{n}=0$ if y is sufficiently is close to x. Thus

$$
\lim _{\substack{y \rightarrow x \\ y>x}} F(y)=F(x),
$$

and so F is right continuous. Thus F is a distribution function.
If we had $n<x$ instead of $n \leq x$ in the definition of $F(x)$ then in the above argument we would have a sum over integers in $[x, y)$. If x were an integer then this interval would always contain integers however close y was to x. Thus $F(x)$ would not necessarily be right continuous. (But what about being left continuous?)
17) To check that μ is additive we need to verify that if given any collection of disjoint sets $\left\{A_{i}\right\}_{1 \leq i \leq N} \subseteq \mathcal{C}$ such that $\bigcup_{i=1}^{N} A_{i} \in \mathcal{C}$ then

$$
\mu\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \mu\left(A_{i}\right)
$$

But the condition here is satisfied in the present example only when $A_{1}=[0,1 / 4)$ and $A_{2}=[1 / 4,3 / 4)$ for then $A_{1} \cup A_{2}=[0,3 / 4) \in \mathcal{C}$. So we check that

$$
\mu\left(A_{1} \cup A_{2}\right)=\mu([0,3 / 4))=4
$$

while

$$
\mu\left(A_{1}\right)+\mu\left(A_{2}\right)=\mu([0,1 / 4))+\mu([1 / 4,3 / 4))=2+2=4 .
$$

Equality means that μ is additive on \mathcal{C}.
The ring generated by \mathcal{C} must be closed under unions and intersections. So we start with \mathcal{C} and add in the sets formed by taking unions and differences. This leads to

$$
\begin{array}{llll}
\phi, & X, & {[0,1 / 4),} & {[0,1 / 2),} \\
{[0,3 / 4),} & {[1 / 4,3 / 4),} & {[1 / 4,1 / 2),} & {[1 / 2,3 / 4),} \\
{[1 / 4,1),} & {[1 / 2,1),} & {[3 / 4,1),} & {[0,1 / 4) \cup[3 / 4,1),} \\
{[0,1 / 2) \cup[3 / 4,1),} & {[0,1 / 4) \cup[1 / 2,3 / 4),} & {[0,1 / 4) \cup[1 / 2,1),} & {[1 / 4,1 / 2) \cup[3 / 4,1) .}
\end{array}
$$

This is the smallest collection you can make from \mathcal{C} by adding in unions and differences. You should check that this is a ring in which case it is the smallest ring containing \mathcal{C} and so the ring generated by \mathcal{C}.

In fact the ring consists of all possible unions of the four intervals

$$
[0,1 / 4), \quad[1 / 4,1 / 2), \quad[1 / 2,3 / 4), \quad[3 / 4,1)
$$

In particular we see that our ring will contain 2^{4} elements.
If we can extend μ to the ring it should take values on these four intervals. It is not hard to see from the information given that we must have

$$
\mu([0,1 / 4))=2, \quad \mu([1 / 4,1 / 2))=0, \quad \mu([1 / 2,3 / 4))=2, \quad \mu([3 / 4,1))=0
$$

Then by additivity every interval in our ring has a measure.
18) To be a semi-ring \mathcal{C} has to be closed under intersections while the difference of two sets from \mathcal{C} should be the union of sets from \mathcal{C}. By observation the intersection of any two sets from \mathcal{C} lies in \mathcal{C}. The only non-trivial difference we can take is

$$
X \backslash\{2,3\}=\{1\} \cup\{4,5\}
$$

a union of sets from \mathcal{C} as required. (I say that all other differences trivial in that they lie in \mathcal{C}.)

To show that μ is additive we need to verify the definition repeated in question 17. In this example there are three collections $\left\{A_{i}\right\} \subseteq \mathcal{C}$ with $\bigcup_{i} A_{i} \in \mathcal{C}$. This means that we have to check the following three equalities.

$$
\begin{align*}
\mu(\{1\})+\mu(\{2,3\}) & =\mu(\{1,2,3\}), \tag{a}\\
\mu(\{1\})+\mu(\{2,3\})+\mu(\{4,5\}) & =\mu(X), \tag{b}\\
\mu(\{1,2,3\})+\mu(\{4,5\}) & =\mu(X) . \tag{c}
\end{align*}
$$

Yet $\operatorname{LHS}(a)=1+1=2$ while $\operatorname{RHS}(a)=2$ so (a) holds. Similarly $\operatorname{LHS}(b)=1+1+1=3$ while $R H S(b)=3$ so (b) holds. Finally, (c) follows from (a) and (b). Hence μ is additive.

As in the last question we add in all unions and differences of the intervals in \mathcal{C} to get the ring generated by \mathcal{C}. Note that in taking unions and differences we never would expect to split up the pair $\{2,3\}$ nor the pair $\{4,5\}$. So we might expect the ring to contain all subsets of $\{1,\{2,3\},\{4,5\}\}$, a set of three elements, and so the ring would contain $2^{3}=8$ sets. In fact we find the ring consists of

$$
\begin{array}{llll}
\phi, & X, & \{2,3\}, & \{1\}, \\
\{4,5\}, & \{1,2,3\}, & \{1\} \cup\{4,5\}, & \{2,3\} \cup\{4,5\} .
\end{array}
$$

We extend μ to \mathcal{R} by defining

$$
\mu(\{1\} \cup\{4,5\})=2, \quad \mu(\{2,3\} \cup\{4,5\})=2 .
$$

So μ is a non-negative and additive. Since X is finite this trivially means σ-additive and so μ is a measure.
19) In all cases we need to check the three conditions for λ to be an outer measure.

1. $\lambda(\phi)=0$
2. If $E \subseteq F$ then $\lambda(E) \leq \lambda(F), \quad$ (Monotonic)
3. $\lambda\left(\bigcup_{1}^{\infty} A_{i}\right) \leq \sum_{1}^{\infty} \lambda\left(A_{i}\right), \quad$ (countably subadditive).

Note that 1. holds in all three examples so we need only check 2 . and 3. (a) 2. Assume $E \subseteq F$.

If $F=\phi$ then necessarily $E=\phi$ and so $\lambda(E)=0=\lambda(F)$.
If $F \neq \phi$ then $\lambda(F)=1$ which is greater than or equal to any value (i.e. 0 or 1) that $\lambda(E)$ can take.

Hence, in all cases, $\lambda(E) \leq \lambda(F)$.
3. Let $\left\{A_{i}\right\}_{i \geq 1}$ be given. If $A_{i}=\phi$ for all $i \geq 1$ then $\bigcup_{1}^{\infty} A_{i}=\phi$ and so

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=0=\sum_{1}^{\infty} \lambda\left(A_{i}\right) .
$$

Otherwise there exists m such that $A_{m} \neq \phi$. Then $\bigcup_{1}^{\infty} A_{i} \neq \phi$ and so

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=1=\lambda\left(A_{m}\right) \leq \sum_{1}^{\infty} \lambda\left(A_{i}\right)
$$

since $\lambda \geq 0$.
Hence λ is an outer measure.
The λ-measurable sets satisfy

$$
\begin{equation*}
\lambda(A)=\lambda(A \cap E)+\lambda\left(A \cap E^{c}\right) \tag{1}
\end{equation*}
$$

for every $A \subseteq X$. So for E to be λ-measurable we need it to satisfy

$$
1=\lambda(E)+\lambda\left(E^{c}\right)
$$

having put $A=X$ in (1). This can only be satisfied if either $E=\phi$ and $E^{c} \neq \phi$, or $E^{c}=\phi$ and $E \neq \phi$. That is, if either $E=\phi$ or $E=X$. Remember these are only possible λ-measurable sets since (1) should hold for all A not
just $A=X$. But we can check that ϕ and X are λ-measurable. Yet ϕ and X are always λ-measurable whatever the problem To see this simply observe that $E=\phi$ in (1) gives $\lambda(A)=0+\lambda(A)$ which is true for all A while $E=X$ in (1) gives $\lambda(A)=\lambda(A)+0$ which again is true for all A.

So the λ-measurable sets are ϕ and X.
b) 2. Assume $E \subseteq F$.

If $E=\phi$ then $\lambda(E)=0$ which is less than or equal to any value $(0,1$ or 2) that can be taken by $\lambda(F)$, so $\lambda(E) \leq \lambda(F)$.

If $\phi \neq E \neq X$ then $\lambda(E)=1$ but also F is necessarily not empty. So $\lambda(F) \geq 1=\lambda(E)$.

If $E=X$ then necessarily $F=X$ and so $\lambda(F)=\lambda(E)$.
Hence, in all cases, $\lambda(E) \leq \lambda(F)$.
3. Let $\left\{A_{i}\right\}_{i \geq 1}$ be given. If $A_{i}=\phi$ for all $i \geq 1$ then $\bigcup_{1}^{\infty} A_{i}=\phi$ and so

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=0=\sum_{1}^{\infty} \lambda\left(A_{i}\right) .
$$

If there exists m such that $A_{m} \neq \phi$ and $\bigcup_{1}^{\infty} A_{i} \neq X$ then $A_{m} \neq X$ and so

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=1=\lambda\left(A_{m}\right) \leq \sum_{1}^{\infty} \lambda\left(A_{i}\right)
$$

since $\lambda \geq 0$. If $A_{m} \neq \phi$ and $\bigcup_{1}^{\infty} A_{i}=X$ then either $A_{m}=X$ or $A_{m} \neq X$ and there exists $k \neq m$ with $A_{k} \neq \phi$. In the first case

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=2=\lambda\left(A_{m}\right) \leq \sum_{1}^{\infty} \lambda\left(A_{i}\right)
$$

while in the second case

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=2 \leq \lambda\left(A_{m}\right)+\lambda\left(A_{k}\right) \leq \sum_{1}^{\infty} \lambda\left(A_{i}\right)
$$

Hence in all cases λ is sub-additive. Hence λ is an outer measure.
As seen in part (a) the sets ϕ and X are λ-measurable.
Claim There are no other λ-measurable sets.
Proof Let $\phi \neq E \neq X$. So there exist $x \in E$ and $y \notin E$. Take as a test set $A=\{x, y\}$ in (1) above. Then $\lambda(A)=1$ while $\lambda(A \cap E)+\lambda\left(A \cap E^{c}\right)=$ $\lambda(\{x\})+\lambda(\{y\})=1+1=2$. So we do not have equality and E is not λ-measurable.
c) 2. Assume $E \subseteq F$.

If E is countable then $\lambda(E)=0$ which is less than or equal to any value (0 or 1) that can be taken by $\lambda(F)$, so $\lambda(E) \leq \lambda(F)$.

If E is uncountable then F is uncountable so $\lambda(E)=1=\lambda(F)$.
Hence, in all cases $\lambda(E) \leq \lambda(F)$.
3. Let $\left\{A_{i}\right\}_{i \geq 1}$ be given. If A_{i} countable for all $i \geq 1$ then $\bigcup_{1}^{\infty} A_{i}$ is countable and so

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=0=\sum_{1}^{\infty} \lambda\left(A_{i}\right) .
$$

Otherwise there exists m such that A_{m} is uncountable. Then $\bigcup_{1}^{\infty} A_{i}$ is also uncountable and so

$$
\lambda\left(\bigcup_{1}^{\infty} A_{i}\right)=1=\lambda\left(A_{m}\right) \leq \sum_{1}^{\infty} \lambda\left(A_{i}\right)
$$

since $\lambda \geq 0$. In all cases $\lambda\left(\bigcup_{1}^{\infty} A_{i}\right) \leq \sum_{1}^{\infty} \lambda\left(A_{i}\right)$. Thus λ is an outer measure.
As in part (a), for E to be λ-measurable we need it to satisfy

$$
1=\lambda(E)+\lambda\left(E^{c}\right)
$$

having put $A=X$ in (1). This can only be satisfied if either E uncountable and E^{c} countable, or E^{c} countable and E uncountable. Since X is uncountable these are the same as either E^{c} countable or E countable. Remember these are only possible λ-measurable sets since (1) should hold for all A not just $A=X$. So we need to check that such sets are λ - measurable.

So, for example, let E be countable.
If the test set A is countable then both sides of (1) are 0 and we have equality.

Assume that the test set A is uncountable. Write $A=\left(A \cap E^{c}\right) \cup(A \cap E)$ and note that $A \cap E$ is countable since it is a subset of a countable set E. Thus A uncountable implies that $A \cap E^{c}$ is uncountable. Thus $\lambda\left(A \cap E^{c}\right)=1$ in (1). As noted $A \cap E \subseteq E$ is countable and so $\lambda(A \cap E)=0$. Finally $\lambda(A)=1$ and so we have equality in (1). Thus (1) holds for all test sets A and so countable E are λ-measurable.

The proof for E^{c} uncountable is similar.
Hence the λ-measurable sets are either E^{c} countable or E countable.
20) Recall the definition of being λ-measurable as

$$
\begin{equation*}
\lambda(A)=\lambda(A \cap E)+\lambda\left(A \cap E^{c}\right) \tag{1}
\end{equation*}
$$

for every $A \subseteq X$. If we put $A=X$ we are asking that $1=\lambda(E)+\lambda\left(E^{c}\right)$ for any λ-measurable set. Since $E \subseteq \mathbb{N}$, and N is infinite, one of E or E^{c} is infinite, i.e. one of $\lambda(E)$ or $\lambda\left(E^{c}\right)=1$. Thus we need one of the two cases, $\lambda(E)=1$ and $\lambda\left(E^{c}\right)=0$ or $\lambda(E)=0$ and $\lambda\left(E^{c}\right)=1$. But $\lambda\left(E^{c}\right)=0$ implies $E^{c}=\phi$, in which case $E=\mathbb{N}$, while $\lambda(E)=0$ implies that $E=\phi$. So the only possible λ-measurable sets are \mathbb{N} and ϕ. As noted in the last two questions the whole space and the empty set are always λ-measurable sets.

