
13) (⇒) Assume that A ⊆ F . Then σ(A) is the intersection of all σ-fields
containingA and so is contained in any such σ-field. In particular, σ(A) ⊆ F .

(⇐) Assume that σ(A) ⊆ F . Trivially A ⊆ σ(A) and so A ⊆ F .

14) Let B = B((a, b]) be the σ-field generated by P , known as the Borel sets
of R.

(i) B([a, b]) = B((a, b]).
Note that

[a, b] =
⋂
n≥1

(
a− 1

n
, b

]
∈ B((a, b])

since a σ-field is closed under countable intersections. So B((a, b]) is a σ-
field containing all [a, b] while B([a, b]) is the smallest such σ-field. Hence
B([a, b]) ⊆ B((a, b]). Similarly

(a, b] =
⋃
n≥1

[
a +

1

n
, b

]
∈ B([a, b]),

giving B((a, b]) ⊆ B([a, b]).
Hence B([a, b]) = B((a, b]).

(ii) To prove B([a, b)) = B((a, b]) it suffices, by part (i) to prove that B([a, b)) =
B([a, b]). This follows as in (i) from the two equalities

[a, b) =
⋃
n≥1

[
a, b− 1

n

]

and

[a, b] =
⋂
n≥1

[
a, b +

1

n

)
.

(iii) You might be happy with {x} = [x, x] ∈ B by (ii) or you could write

{x} =
⋂
n≥1

(
x− 1

n
, x +

1

n

]
∈ B.

(iv)

Q =
⋃

r∈Q
{r}

a countable union of sets that by (iii) are in B. Hence Q ∈ B.

(v) Recall that σ-fields are closed under complements so
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{irrationals} = Qc ∈ B.

(vi) Let A ∈ co-finite topology. Then either A = φ ∈ B or Ac is finite. In
the second case we can write

Ac = {x1, x2, ..., xr}

=
r⋃

i=1

{xi} ∈ B.

Thus A = (Ac)c ∈ B.
Hence the co-finite topology on R is a subset of B.

15) At every point x0 of discontinuity we have

lim
x→x0
x<x0

F (x) < lim
x→x0
x>x0

F (x) = F (x0).

From the first year we know that between any two real numbers we can
find a rational, so we can find a rational r = r(x0) satisfying

lim
x→x0
x<x0

F (x) < r < lim
x→x0
x>x0

F (x) = F (x0).

Now if x1 is a point of discontinuity which larger than x0 then

r(x0) < F (x0) ≤ lim
x→x1
x<x1

F (x) since F is monotonic increasing,

< r(x1) < lim
x→x1
x>x1

F (x).

So the sequence of rationals we choose, r(xi), are distinct. The collec-
tion of all rationals is countable so the collection of discontinuities must be
countable.

16) If y > x then

F (y)− F (x) =
∑

x<n≤y

pn ≥ 0

since the pn ≥ 0. So F is increasing. Also

lim
y→x
y>x

F (y)− F (x) = lim
y→x
y>x

∑
x<n≤y

pn.
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But if y is sufficiently close to x then (x, y] never contains an integer. To
see this assume first that x is an integer, when if x < y < x + 1 then (x, y]
does not contain an integer. Otherwise x is not an integer. But if n is the
smallest integer x < n then if y < n also we see again that (x, y] does not
contain an integer. So

∑
x<n≤y pn = 0 if y is sufficiently is close to x. Thus

lim
y→x
y>x

F (y) = F (x),

and so F is right continuous. Thus F is a distribution function.

If we had n < x instead of n ≤ x in the definition of F (x) then in the
above argument we would have a sum over integers in [x, y). If x were an
integer then this interval would always contain integers however close y was
to x. Thus F (x) would not necessarily be right continuous. (But what about
being left continuous?)

17) To check that µ is additive we need to verify that if given any collection
of disjoint sets {Ai}1≤i≤N ⊆ C such that

⋃N
i=1 Ai ∈ C then

µ

(
N⋃

i=1

Ai

)
=

N∑
i=1

µ(Ai).

But the condition here is satisfied in the present example only when
A1 = [0, 1/4) and A2 = [1/4, 3/4) for then A1 ∪ A2 = [0, 3/4) ∈ C. So we
check that

µ(A1 ∪ A2) = µ([0, 3/4)) = 4

while

µ(A1) + µ(A2) = µ([0, 1/4)) + µ([1/4, 3/4)) = 2 + 2 = 4.

Equality means that µ is additive on C.
The ring generated by C must be closed under unions and intersections. So

we start with C and add in the sets formed by taking unions and differences.
This leads to

φ, X, [0, 1/4), [0, 1/2),
[0, 3/4), [1/4, 3/4), [1/4, 1/2), [1/2, 3/4),
[1/4, 1), [1/2, 1), [3/4, 1), [0, 1/4) ∪ [3/4, 1),
[0, 1/2) ∪ [3/4, 1), [0, 1/4) ∪ [1/2, 3/4), [0, 1/4) ∪ [1/2, 1), [1/4, 1/2) ∪ [3/4, 1).

This is the smallest collection you can make from C by adding in unions
and differences. You should check that this is a ring in which case it is the
smallest ring containing C and so the ring generated by C.
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In fact the ring consists of all possible unions of the four intervals

[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1).

In particular we see that our ring will contain 24 elements.
If we can extend µ to the ring it should take values on these four intervals.

It is not hard to see from the information given that we must have

µ([0, 1/4)) = 2, µ([1/4, 1/2)) = 0, µ([1/2, 3/4)) = 2, µ([3/4, 1)) = 0.

Then by additivity every interval in our ring has a measure.

18) To be a semi-ring C has to be closed under intersections while the differ-
ence of two sets from C should be the union of sets from C. By observation the
intersection of any two sets from C lies in C. The only non-trivial difference
we can take is

X \ {2, 3} = {1} ∪ {4, 5},
a union of sets from C as required. (I say that all other differences trivial in
that they lie in C.)

To show that µ is additive we need to verify the definition repeated in
question 17. In this example there are three collections {Ai} ⊆ C with⋃

i Ai ∈ C. This means that we have to check the following three equalities.

µ({1}) + µ({2, 3}) = µ({1, 2, 3}), (a)

µ({1}) + µ({2, 3}) + µ({4, 5}) = µ(X), (b)

µ({1, 2, 3}) + µ({4, 5}) = µ(X). (c)

Yet LHS(a) = 1 + 1 = 2 while RHS(a) = 2 so (a) holds. Similarly
LHS(b) = 1 + 1 + 1 = 3 while RHS(b) = 3 so (b) holds. Finally, (c) follows
from (a) and (b). Hence µ is additive.

As in the last question we add in all unions and differences of the intervals
in C to get the ring generated by C. Note that in taking unions and differences
we never would expect to split up the pair {2, 3} nor the pair {4, 5}. So we
might expect the ring to contain all subsets of {1, {2, 3}, {4, 5}}, a set of
three elements, and so the ring would contain 23 = 8 sets. In fact we find
the ring consists of

φ, X, {2, 3}, {1},
{4, 5}, {1, 2, 3}, {1} ∪ {4, 5}, {2, 3} ∪ {4, 5}.
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We extend µ to R by defining

µ({1} ∪ {4, 5}) = 2, µ({2, 3} ∪ {4, 5}) = 2.

So µ is a non-negative and additive. Since X is finite this trivially means
σ-additive and so µ is a measure.

19) In all cases we need to check the three conditions for λ to be an outer
measure.

1. λ(φ) = 0

2. If E ⊆ F then λ(E) ≤ λ(F ), (Monotonic)

3. λ (
⋃∞

1 Ai) ≤
∑∞

1 λ(Ai), (countably subadditive).

Note that 1. holds in all three examples so we need only check 2. and 3.

(a) 2. Assume E ⊆ F .
If F = φ then necessarily E = φ and so λ(E) = 0 = λ(F ).
If F 6= φ then λ(F ) = 1 which is greater than or equal to any value (i.e.

0 or 1) that λ(E) can take.
Hence, in all cases, λ(E) ≤ λ(F ).
3. Let {Ai}i≥1 be given. If Ai = φ for all i ≥ 1 then

⋃∞
1 Ai = φ and so

λ

(∞⋃
1

Ai

)
= 0 =

∞∑
1

λ(Ai).

Otherwise there exists m such that Am 6= φ. Then
⋃∞

1 Ai 6= φ and so

λ

(∞⋃
1

Ai

)
= 1 = λ (Am) ≤

∞∑
1

λ(Ai)

since λ ≥ 0.
Hence λ is an outer measure.
The λ-measurable sets satisfy

λ(A) = λ(A ∩ E) + λ(A ∩ Ec) (1)

for every A ⊆ X. So for E to be λ-measurable we need it to satisfy

1 = λ(E) + λ(Ec),

having put A = X in (1). This can only be satisfied if either E = φ and
Ec 6= φ, or Ec = φ and E 6= φ. That is, if either E = φ or E = X. Remember
these are only possible λ-measurable sets since (1) should hold for all A not
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just A = X. But we can check that φ and X are λ-measurable. Yet φ and X
are always λ-measurable whatever the problem To see this simply observe
that E = φ in (1) gives λ(A) = 0+λ(A) which is true for all A while E = X
in (1) gives λ(A) = λ(A) + 0 which again is true for all A.

So the λ-measurable sets are φ and X.

b) 2. Assume E ⊆ F .
If E = φ then λ(E) = 0 which is less than or equal to any value (0,1 or

2) that can be taken by λ(F ), so λ(E) ≤ λ(F ).
If φ 6= E 6= X then λ(E) = 1 but also F is necessarily not empty. So

λ(F ) ≥ 1 = λ(E).
If E = X then necessarily F = X and so λ(F ) = λ(E).
Hence, in all cases, λ(E) ≤ λ(F ).
3. Let {Ai}i≥1 be given. If Ai = φ for all i ≥ 1 then

⋃∞
1 Ai = φ and so

λ

(∞⋃
1

Ai

)
= 0 =

∞∑
1

λ(Ai).

If there exists m such that Am 6= φ and
⋃∞

1 Ai 6= X then Am 6= X and so

λ

(∞⋃
1

Ai

)
= 1 = λ (Am) ≤

∞∑
1

λ(Ai)

since λ ≥ 0. If Am 6= φ and
⋃∞

1 Ai = X then either Am = X or Am 6= X
and there exists k 6= m with Ak 6= φ. In the first case

λ

(∞⋃
1

Ai

)
= 2 = λ(Am) ≤

∞∑
1

λ(Ai)

while in the second case

λ

(∞⋃
1

Ai

)
= 2 ≤ λ(Am) + λ(Ak) ≤

∞∑
1

λ(Ai).

Hence in all cases λ is sub-additive. Hence λ is an outer measure.
As seen in part (a) the sets φ and X are λ-measurable.

Claim There are no other λ-measurable sets.

Proof Let φ 6= E 6= X. So there exist x ∈ E and y /∈ E. Take as a test
set A = {x, y} in (1) above. Then λ(A) = 1 while λ(A ∩ E) + λ(A ∩ Ec) =
λ({x}) + λ({y}) = 1 + 1 = 2. So we do not have equality and E is not
λ-measurable.

c) 2. Assume E ⊆ F .
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If E is countable then λ(E) = 0 which is less than or equal to any value
(0 or 1) that can be taken by λ(F ), so λ(E) ≤ λ(F ).

If E is uncountable then F is uncountable so λ(E) = 1 = λ(F ).
Hence, in all cases λ(E) ≤ λ(F ).

3. Let {Ai}i≥1 be given. If Ai countable for all i ≥ 1 then
⋃∞

1 Ai is
countable and so

λ

(∞⋃
1

Ai

)
= 0 =

∞∑
1

λ(Ai).

Otherwise there exists m such that Am is uncountable. Then
⋃∞

1 Ai is
also uncountable and so

λ

(∞⋃
1

Ai

)
= 1 = λ (Am) ≤

∞∑
1

λ(Ai)

since λ ≥ 0. In all cases λ (
⋃∞

1 Ai) ≤
∑∞

1 λ(Ai). Thus λ is an outer measure.
As in part (a), for E to be λ-measurable we need it to satisfy

1 = λ(E) + λ(Ec),

having put A = X in (1). This can only be satisfied if either E uncountable
and Ec countable, or Ec countable and E uncountable. Since X is uncount-
able these are the same as either Ec countable or E countable. Remember
these are only possible λ-measurable sets since (1) should hold for all A not
just A = X. So we need to check that such sets are λ- measurable.

So, for example, let E be countable.
If the test set A is countable then both sides of (1) are 0 and we have

equality.
Assume that the test set A is uncountable. Write A = (A∩Ec)∪ (A∩E)

and note that A ∩ E is countable since it is a subset of a countable set E.
Thus A uncountable implies that A∩Ec is uncountable. Thus λ(A∩Ec) = 1
in (1). As noted A ∩ E ⊆ E is countable and so λ(A ∩ E) = 0. Finally
λ(A) = 1 and so we have equality in (1). Thus (1) holds for all test sets A
and so countable E are λ-measurable.

The proof for Ec uncountable is similar.

Hence the λ-measurable sets are either Ec countable or E countable.

20) Recall the definition of being λ-measurable as

λ(A) = λ(A ∩ E) + λ(A ∩ Ec) (1)
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for every A ⊆ X. If we put A = X we are asking that 1 = λ(E) + λ(Ec)
for any λ-measurable set. Since E ⊆ N, and N is infinite, one of E or Ec is
infinite, i.e. one of λ(E) or λ(Ec) = 1. Thus we need one of the two cases,
λ(E) = 1 and λ(Ec) = 0 or λ(E) = 0 and λ(Ec) = 1. But λ(Ec) = 0 implies
Ec = φ, in which case E = N, while λ(E) = 0 implies that E = φ. So
the only possible λ-measurable sets are N and φ. As noted in the last two
questions the whole space and the empty set are always λ-measurable sets.
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