
Applications of the course to Number Theory

Rational Approximations
Theorem 1 (Dirichlet)

If ξ is real and irrational then there are infinitely many distinct rational
numbers p/q such that

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

q2
. (1)

Proof Let Q ≥ 1 be given. For a real number α let [α] be the largest
integer no greater than α, called the integer part of α and set {α} = α −
[α], the fractional part of α. Consider the fractional parts {0ξ}, {ξ}, {2ξ},
{3ξ}, ...,{Qξ} and the intervals [i/Q, (i + 1)/Q], 0 ≤ i ≤ Q − 1. There are
Q + 1 fractional parts distributed amongst the Q intervals. So there must
exist some interval containing at least two of the fractional parts, i.e. {aξ}
and {bξ}, 0 ≤ a < b ≤ Q, say, lying in [j/Q, (j + 1)/Q]. Being in the
same interval means that |{bξ} − {aξ}| ≤ 1/Q. Write aξ = m + {aξ} and
bξ = n + {bξ} for appropriate integers m and n. Then

{bξ} − {aξ} = (bξ − n)− (aξ −m) = (b− a)ξ − (n−m).

Writing q = b− a so 0 ≤ q ≤ Q and p = n−m we find that we can solve

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

qQ

for some 0 ≤ q ≤ Q. Since this is true for all Q this gives the infinity of
solutions for (4) (noting that 1/qQ ≤ 1/q2 when q ≤ Q). ¥

This can be improved

Theorem 2 (Hurwitz)
If ξ is real and irrational then there are infinitely many distinct rational

numbers p/q such that

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1√
5q2

.

Proof Not given (The easiest way is to used continued fractions.) ¥
The constant

√
5 is best possible, in that the result does not hold if it

is replaced by a larger value. So if c >
√

5 then there exist irrational ξ for
which there are only finitely many distinct p/q satisfying |ξ − p/q| < 1/cq2.
In particular ξ = (1 +

√
5)/2 would be such an exception. Yet it can be

shown that the number of exceptions are relatively rare.
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Theorem 3
If f(q)/q increases with q and

∞∑
q=1

1

f(q)

is divergent then, for almost all ξ we can find an infinite sequence of distinct
rationals p/q, q > 0 satisfying

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

qf(q)
.

Proof Not given ¥
This result shows that orders of approximation such as

<
1

q2 log q
and <

1

q2 log q log log q

are usually possible, for almost all ξ.
I leave it as an exercise to the student to prove that

∞∑
q=1

1

q log q
and

∞∑
q=1

1

q log q log log q

diverge. (The easiest method is to bound above by integrals.)
Though we don’t give the proof of Theorem 3 we do prove a (partial)

converse below.

Borel Cantelli Lemma
Observation Let Ai, i ≥ 1 be an infinite collection of sets. An element x
will lie in finitely many of these Ai, if and only if

∃N ≥ 1 : ∀n ≥ N, x /∈ An.

So the element x will belong to infinitely many of these Ai if and only if

¬ (∃N ≥ 1 : ∀n ≥ N, x /∈ An)

≡ ∀N ≥ 1, ∃n ≥ N : ¬(x /∈ An)

≡ ∀N ≥ 1, ∃n ≥ N : x ∈ An

≡ x ∈
⋂
N≥1

⋃

k≥N

Ak.
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Theorem 4 (Borel Cantelli Lemma) If A1, A2, .... ∈ F and
∑∞

i=1 µ(Ai) < ∞
then

µ{x : xbelongs to infinitely many Ai} = 0.

Proof
By the observation it suffices to prove that

µ

( ⋂
N≥1

⋃

k≥N

Ak

)
= 0.

Let ε > 0 be given. By the definition of convergence of the series in the
assumptions we have that there exists M ≥ 1 such that

∞∑
i=M

µ(Ai) < ε.

For this M we also have

⋂
N≥1

⋃

k≥N

Ak ⊆
⋃

k≥M

Ak.

Hence

µ
(⋂

N≥1

⋃
k≥N

Ak

)
≤ µ

(⋃
k≥M

Ak

)
since µ is monotone,

≤
∑∞

i=M
µ(Ai) since µ is sub-additive,

< ε.

True for all ε > 0 implies the required result. ¥
Theorem 4 has many applications in Probability Theory but here we give

one in Number Theory, concerning rational approximations.

Theorem 5 Let f : N → R be given. Define D ⊆ [0, 1] by α ∈ D if, and
only if, there exist infinitely many p/q, p, q ∈ Z, p > 0 such that

∣∣∣∣α−
p

q

∣∣∣∣ <
1

qf(q)
.

Then if

∞∑
q=1

1

f(q)
< ∞ (2)
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we have that the Lebesgue measure of D is zero.

Proof Define

Aq =
⋃

0≤p≤q

(
p

q
− 1

qf(q)
,
p

q
+

1

qf(q)

)
.

Then α ∈ D if, and only if, α ∈ Aq ∩ [0, 1] for infinitely many q, so it suffices
to show, subject to (2), that µ

(⋂
N≥1

⋃
k≥N(Ak ∩ [0, 1])

)
= 0. Yet

µ (Aq ∩ [0, 1]) ≤ µ (Aq) ≤ 2
∑

0≤p≤q

1

qf(q)
≤ 2(q + 1)

qf(q)
≤ 4

f(q)
.

Hence

∞∑
q=1

µ (Aq ∩ [0, 1]) ≤
∞∑

q=1

4

f(q)
< ∞.

So the sets Aq ∩ [0, 1] satisfy the conditions of Theorem 4 and hence
µ

(⋂
N≥1

⋃
k≥N(Ak ∩ [0, 1])

)
= 0, that is, µ(D) = 0. ¥

Note This theorem shows that Dirichlet’s result cannot be extended to

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

q2 log2 q
,

for instance, for many ξ. (I’ll leave it to the student to check that

∞∑
q=1

1

q2 log2 q

converges but agin the easiest way is to bound the sum from above by an
integral.)

It is obvious that this result is a partial converse of Theorem 3, where
we also needed that f(q)/q increases with q. For such f we see that there
are two cases for the sum in (2), it either diverges as in Theorem 3, when a
property holds for almost all numbers, or the sum converges as in Theorem
5, when the property holds for almost no number. We say that the property
satisfies a zero-one law (There is never a case “in the middle”.)

As remarked above this shows that Dirichlet’s result on approximations
cannot be substantially improved for all ξ. Yet there are numbers ξ that
have exceptionally good approximations.

6 Liouville numbers
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Theorem 6 For any algebraic number α of degree n > 1 there exists M =
M(α) > 1 such that

∣∣∣∣α−
p

q

∣∣∣∣ >
1

Mqn

for all integers p, q, p > 0.

Proof If p/q is chosen such that

∣∣∣∣α−
p

q

∣∣∣∣ > 1

then the result is trivial so assume that p/q satisfies |qα− p| ≤ q.
Assume α is a root of

f(x) = a0 + a1x + a2x
2 + ... + anx

n,

where ai ∈ Z. Given any p/q we must have f(p/q) 6= 0 for if not we would
be able to write f(x) = (qx − p)g(x) for some polynomial g with integer
coefficients but with deg g = n − 1. Also, since α is algebraic of degree
strictly greater than 1, we have that g(α) = 0 in which case α is algebraic of
degree ≤ n− 1. This would be a contradiction.

So

0 6= f

(
p

q

)
=

a0q
n + a1pq

n−1 + a2p
2qn−1 + ... + anpn

qn
.

Thus a0q
n + a1pq

n−1 + a2p
2qn−1 + ... + anpn is an integer since all p, q, ai ∈ Z

not equal to zero. Hence (and this is the “trick”) we must have |a0q
n +

a1pq
n−1 + a2p

2qn−1 + ... + anp
n| ≥ 1 and

∣∣∣∣f
(

p

q

)∣∣∣∣ ≥
1

qn
. (3)

For a real number x close to α we can use the Mean Value Theorem to
get

|f(x)| = |f(x)− f(α)| = |f ′(ζ)||x− α|
for some ζ : |ζ − α| ≤ |α − x|. Choose x = p/q which by assumption above
satisfies |p/q − α| ≤ 1 and so ζ satisfies |ζ − α| ≤ |p/q − α| ≤ 1. Define

M = sup(1, |f ′(ζ)| : |ζ − α| ≤ 1).

Then, combining with (3) gives
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1

qn
≤

∣∣∣∣f
(

p

q

)∣∣∣∣ = |f ′(ζ)|
∣∣∣∣
p

q
− α

∣∣∣∣

≤ M

∣∣∣∣
p

q
− α

∣∣∣∣ ,

which is the required result. ¥
Example We can follow the method of proof of the above theorem when
α = (1 +

√
5)/2. Then f(x) = x2 − x − 1 and f ′(x) = 2x − 1. As we take

better approximations p/q to α then ζ, which lies between α and p/q must
get closer to α, that is, |f ′(ζ)| must get closer to |f ′(α)| =

√
5. So we can

take M no smaller than
√

5, confirming the optimal nature of the Theorem
of Hurwitz above.

Liouville’s Theorem has been improved such that given any algebraic
number (whatever its degree) and any κ > 2 then there exists a constant
c = c(α, κ) with

∣∣∣∣α−
p

q

∣∣∣∣ >
c

qκ

for all rationals p/q. From Dirichlet’s Theorem this is seen to be best possible
in that we cannot take κ ≤ 2. Strangely, there is no known formulae or
method for calculating c(α, κ) in general. Only for some particular α and κ
is it known. For instance, c( 3

√
2, 2.955) ≥ 10−6, that is,

∣∣∣∣
3
√

2− p

q

∣∣∣∣ >
10−6

q2.955

for all rationals p/q.

Definition A real number α is a Liouville number if α is irrational and for
all n ≥ 1 there exists integers p, q > 0 such that

∣∣∣∣
p

q
− α

∣∣∣∣ <
1

qn
.

Example

α =
∞∑

k=1

1

10k!

is a Liouville number.

Verification Let αN be the sum of the first N terms so
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αN =
1

10
+

1

102
+

1

106
+ ... +

1

10N !

=
10N !−1 + 10N !−2 + ... + 10N + 1

10N !

=
10n + 1

10N !
=

p

10N !
,

for some integer p, of the form 10n + 1 and so coprime to 10N !. Then

∣∣∣ p

10N !
− α

∣∣∣ =
1

10(N+1)!
+

1

10(N+2)!
+

1

10(N+3)!
+ ...

<
2

10(N+1)!
<

1

(10N !)N
.

So for every N we can find a very good rational approximation to α, so α is
a Liouville number.

Theorem 7
Every Liouville number is transcendental.

Proof
Assume not, so there exists a Liouville number α that is algebraic for

some degree n. Note that n > 1 since α is irrational. Then Theorem 6
implies that there exists M ≥ 1 such that

∣∣∣∣α−
p

q

∣∣∣∣ >
1

Mqn

for all integers p, q > 0. Choose an integer k ≥ n such that 2k > 2nM . Then
since α is Liuoville we can find integers p, q > 0 such that

∣∣∣∣
p

q
− α

∣∣∣∣ <
1

qk
<

1

Mqn

by the choice of k. This is a contradiction so the assumption is false and
every Liouville number is transcendental. ¥

Let E be the set of all Liouville numbers.

Theorem 8

The set E has zero Lebesgue measure in [0, 1].

Proof By definition α ∈ E if, and only if, α ∈ Qc and for all k ≥ 1 there
exist integers p > 0 and q such that
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∣∣∣∣
p

q
− α

∣∣∣∣ <
1

qk
.

So

E = Qc ∩
∞⋂

k=1

+∞⋃
p=−∞

⋃
q≥2

(
p

q
− 1

qk
,
p

q
+

1

qk

)

= Qc ∩
∞⋂

k=1

Gk,

say. Note that

Gk ∩ [0, 1] ⊆
⋃
q≥2

q⋃
p=0

(
p

q
− 1

qk
,
p

q
+

1

qk

)
.

Let µ be the Lebesgue measure on R. Then

µ (Gk ∩ [0, 1]) ≤
∑
q≥2

q∑
p=0

µ

(
p

q
− 1

qk
,
p

q
+

1

qk

)

=
∑
q≥2

q∑
p=0

2

qk

=
∑
q≥2

2(q + 1)

qk

≤ 4
∑
q≥2

1

qk−1
.

To bound this sum observe that

1

qk−1
<

∫ q

q−1

dt

tk−1

since tk−1 ≤ qk−1 in the range of the integral. Adding gives

∑
q≥2

1

qk−1
<

∫ ∞

1

dt

tk−1
=

1

k − 2
.

Hence µ (Gk ∩ [0, 1]) ≤ 4/(k − 2). But E ∩ [0, 1] ⊆ Gk ∩ [0, 1] for all k so
µ (E ∩ [0, 1]) ≤ 4/(k − 2) for all k ≥ 2. Hence µ (E ∩ [0, 1]) = 0. ¥
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