Applications of the course to Number Theory

Rational Approximations

Theorem 1 (Dirichlet)
If ξ is real and irrational then there are infinitely many distinct rational numbers p / q such that

$$
\begin{equation*}
\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{2}} . \tag{1}
\end{equation*}
$$

Proof Let $Q \geq 1$ be given. For a real number α let $[\alpha]$ be the largest integer no greater than α, called the integer part of α and set $\{\alpha\}=\alpha-$ $[\alpha]$, the fractional part of α. Consider the fractional parts $\{0 \xi\},\{\xi\},\{2 \xi\}$, $\{3 \xi\}, \ldots,\{Q \xi\}$ and the intervals $[i / Q,(i+1) / Q], 0 \leq i \leq Q-1$. There are $Q+1$ fractional parts distributed amongst the Q intervals. So there must exist some interval containing at least two of the fractional parts, i.e. $\{a \xi\}$ and $\{b \xi\}, 0 \leq a<b \leq Q$, say, lying in $[j / Q,(j+1) / Q]$. Being in the same interval means that $|\{b \xi\}-\{a \xi\}| \leq 1 / Q$. Write $a \xi=m+\{a \xi\}$ and $b \xi=n+\{b \xi\}$ for appropriate integers m and n. Then

$$
\{b \xi\}-\{a \xi\}=(b \xi-n)-(a \xi-m)=(b-a) \xi-(n-m) .
$$

Writing $q=b-a$ so $0 \leq q \leq Q$ and $p=n-m$ we find that we can solve

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{q Q}
$$

for some $0 \leq q \leq Q$. Since this is true for all Q this gives the infinity of solutions for (4) (noting that $1 / q Q \leq 1 / q^{2}$ when $q \leq Q$).

This can be improved
Theorem 2 (Hurwitz)
If ξ is real and irrational then there are infinitely many distinct rational numbers p / q such that

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

Proof Not given (The easiest way is to used continued fractions.)
The constant $\sqrt{5}$ is best possible, in that the result does not hold if it is replaced by a larger value. So if $c>\sqrt{5}$ then there exist irrational ξ for which there are only finitely many distinct p / q satisfying $|\xi-p / q|<1 / c q^{2}$. In particular $\xi=(1+\sqrt{5}) / 2$ would be such an exception. Yet it can be shown that the number of exceptions are relatively rare.

Theorem 3

If $f(q) / q$ increases with q and

$$
\sum_{q=1}^{\infty} \frac{1}{f(q)}
$$

is divergent then, for almost all ξ we can find an infinite sequence of distinct rationals $p / q, q>0$ satisfying

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{q f(q)} .
$$

Proof Not given
This result shows that orders of approximation such as

$$
<\frac{1}{q^{2} \log q} \quad \text { and } \quad<\frac{1}{q^{2} \log q \log \log q}
$$

are usually possible, for almost all ξ.
I leave it as an exercise to the student to prove that

$$
\sum_{q=1}^{\infty} \frac{1}{q \log q} \quad \text { and } \quad \sum_{q=1}^{\infty} \frac{1}{q \log q \log \log q}
$$

diverge. (The easiest method is to bound above by integrals.)
Though we don't give the proof of Theorem 3 we do prove a (partial) converse below.

Borel Cantelli Lemma

Observation Let $A_{i}, i \geq 1$ be an infinite collection of sets. An element x will lie in finitely many of these A_{i}, if and only if

$$
\exists N \geq 1: \forall n \geq N, x \notin A_{n}
$$

So the element x will belong to infinitely many of these A_{i} if and only if

$$
\begin{aligned}
& \neg\left(\exists N \geq 1: \forall n \geq N, x \notin A_{n}\right) \\
\equiv & \forall N \geq 1, \exists n \geq N: \neg\left(x \notin A_{n}\right) \\
\equiv & \forall N \geq 1, \exists n \geq N: x \in A_{n} \\
\equiv & x \in \bigcap_{N \geq 1} \bigcup_{k \geq N} A_{k} .
\end{aligned}
$$

Theorem 4 (Borel Cantelli Lemma) If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ and $\sum_{i=1}^{\infty} \mu\left(A_{i}\right)<\infty$ then

$$
\mu\left\{x: \text { xbelongs to infinitely many } A_{i}\right\}=0 .
$$

Proof
By the observation it suffices to prove that

$$
\mu\left(\bigcap_{N \geq 1} \bigcup_{k \geq N} A_{k}\right)=0
$$

Let $\varepsilon>0$ be given. By the definition of convergence of the series in the assumptions we have that there exists $M \geq 1$ such that

$$
\sum_{i=M}^{\infty} \mu\left(A_{i}\right)<\varepsilon
$$

For this M we also have

$$
\bigcap_{N \geq 1} \bigcup_{k \geq N} A_{k} \subseteq \bigcup_{k \geq M} A_{k}
$$

Hence

$$
\begin{aligned}
\mu\left(\bigcap_{N \geq 1} \bigcup_{k \geq N} A_{k}\right) & \leq \mu\left(\bigcup_{k \geq M} A_{k}\right) \quad \text { since } \mu \text { is monotone } \\
& \leq \sum_{i=M}^{\infty} \mu\left(A_{i}\right) \quad \text { since } \mu \text { is sub-additive } \\
& <\varepsilon
\end{aligned}
$$

True for all $\varepsilon>0$ implies the required result.
Theorem 4 has many applications in Probability Theory but here we give one in Number Theory, concerning rational approximations.
Theorem 5 Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be given. Define $D \subseteq[0,1]$ by $\alpha \in D$ if, and only if, there exist infinitely many $p / q, p, q \in \mathbb{Z}, p>0$ such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q f(q)} .
$$

Then if

$$
\begin{equation*}
\sum_{q=1}^{\infty} \frac{1}{f(q)}<\infty \tag{2}
\end{equation*}
$$

we have that the Lebesgue measure of D is zero.
Proof Define

$$
A_{q}=\bigcup_{0 \leq p \leq q}\left(\frac{p}{q}-\frac{1}{q f(q)}, \frac{p}{q}+\frac{1}{q f(q)}\right)
$$

Then $\alpha \in D$ if, and only if, $\alpha \in A_{q} \cap[0,1]$ for infinitely many q, so it suffices to show, subject to (2), that $\mu\left(\bigcap_{N \geq 1} \bigcup_{k \geq N}\left(A_{k} \cap[0,1]\right)\right)=0$. Yet

$$
\mu\left(A_{q} \cap[0,1]\right) \leq \mu\left(A_{q}\right) \leq 2 \sum_{0 \leq p \leq q} \frac{1}{q f(q)} \leq \frac{2(q+1)}{q f(q)} \leq \frac{4}{f(q)} .
$$

Hence

$$
\sum_{q=1}^{\infty} \mu\left(A_{q} \cap[0,1]\right) \leq \sum_{q=1}^{\infty} \frac{4}{f(q)}<\infty
$$

So the sets $A_{q} \cap[0,1]$ satisfy the conditions of Theorem 4 and hence

$$
\mu\left(\bigcap_{N \geq 1} \bigcup_{k \geq N}\left(A_{k} \cap[0,1]\right)\right)=0, \text { that is, } \mu(D)=0 .
$$

Note This theorem shows that Dirichlet's result cannot be extended to

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{2} \log ^{2} q},
$$

for instance, for many ξ. (I'll leave it to the student to check that

$$
\sum_{q=1}^{\infty} \frac{1}{q^{2} \log ^{2} q}
$$

converges but agin the easiest way is to bound the sum from above by an integral.)

It is obvious that this result is a partial converse of Theorem 3, where we also needed that $f(q) / q$ increases with q. For such f we see that there are two cases for the sum in (2), it either diverges as in Theorem 3, when a property holds for almost all numbers, or the sum converges as in Theorem 5 , when the property holds for almost no number. We say that the property satisfies a zero-one law (There is never a case "in the middle".)

As remarked above this shows that Dirichlet's result on approximations cannot be substantially improved for all ξ. Yet there are numbers ξ that have exceptionally good approximations.

6 Liouville numbers

Theorem 6 For any algebraic number α of degree $n>1$ there exists $M=$ $M(\alpha)>1$ such that

$$
\left|\alpha-\frac{p}{q}\right|>\frac{1}{M q^{n}}
$$

for all integers $p, q, p>0$.
Proof If p / q is chosen such that

$$
\left|\alpha-\frac{p}{q}\right|>1
$$

then the result is trivial so assume that p / q satisfies $|q \alpha-p| \leq q$.
Assume α is a root of

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

where $a_{i} \in \mathbb{Z}$. Given any p / q we must have $f(p / q) \neq 0$ for if not we would be able to write $f(x)=(q x-p) g(x)$ for some polynomial g with integer coefficients but with $\operatorname{deg} g=n-1$. Also, since α is algebraic of degree strictly greater than 1 , we have that $g(\alpha)=0$ in which case α is algebraic of degree $\leq n-1$. This would be a contradiction.

So

$$
0 \neq f\left(\frac{p}{q}\right)=\frac{a_{0} q^{n}+a_{1} p q^{n-1}+a_{2} p^{2} q^{n-1}+\ldots+a_{n} p^{n}}{q^{n}}
$$

Thus $a_{0} q^{n}+a_{1} p q^{n-1}+a_{2} p^{2} q^{n-1}+\ldots+a_{n} p^{n}$ is an integer since all $p, q, a_{i} \in \mathbb{Z}$ not equal to zero. Hence (and this is the "trick") we must have $\mid a_{0} q^{n}+$ $a_{1} p q^{n-1}+a_{2} p^{2} q^{n-1}+\ldots+a_{n} p^{n} \mid \geq 1$ and

$$
\begin{equation*}
\left|f\left(\frac{p}{q}\right)\right| \geq \frac{1}{q^{n}} \tag{3}
\end{equation*}
$$

For a real number x close to α we can use the Mean Value Theorem to get

$$
|f(x)|=|f(x)-f(\alpha)|=\left|f^{\prime}(\zeta)\right||x-\alpha|
$$

for some $\zeta:|\zeta-\alpha| \leq|\alpha-x|$. Choose $x=p / q$ which by assumption above satisfies $|p / q-\alpha| \leq 1$ and so ζ satisfies $|\zeta-\alpha| \leq|p / q-\alpha| \leq 1$. Define

$$
M=\sup \left(1,\left|f^{\prime}(\zeta)\right|:|\zeta-\alpha| \leq 1\right)
$$

Then, combining with (3) gives

$$
\begin{aligned}
\frac{1}{q^{n}} & \leq\left|f\left(\frac{p}{q}\right)\right|=\left|f^{\prime}(\zeta)\right|\left|\frac{p}{q}-\alpha\right| \\
& \leq M\left|\frac{p}{q}-\alpha\right|
\end{aligned}
$$

which is the required result.
Example We can follow the method of proof of the above theorem when $\alpha=(1+\sqrt{5}) / 2$. Then $f(x)=x^{2}-x-1$ and $f^{\prime}(x)=2 x-1$. As we take better approximations p / q to α then ζ, which lies between α and p / q must get closer to α, that is, $\left|f^{\prime}(\zeta)\right|$ must get closer to $\left|f^{\prime}(\alpha)\right|=\sqrt{5}$. So we can take M no smaller than $\sqrt{5}$, confirming the optimal nature of the Theorem of Hurwitz above.

Liouville's Theorem has been improved such that given any algebraic number (whatever its degree) and any $\kappa>2$ then there exists a constant $c=c(\alpha, \kappa)$ with

$$
\left|\alpha-\frac{p}{q}\right|>\frac{c}{q^{\kappa}}
$$

for all rationals p / q. From Dirichlet's Theorem this is seen to be best possible in that we cannot take $\kappa \leq 2$. Strangely, there is no known formulae or method for calculating $c(\alpha, \kappa)$ in general. Only for some particular α and κ is it known. For instance, $c(\sqrt[3]{2}, 2.955) \geq 10^{-6}$, that is,

$$
\left|\sqrt[3]{2}-\frac{p}{q}\right|>\frac{10^{-6}}{q^{2.955}}
$$

for all rationals p / q.
Definition A real number α is a Liouville number if α is irrational and for all $n \geq 1$ there exists integers $p, q>0$ such that

$$
\left|\frac{p}{q}-\alpha\right|<\frac{1}{q^{n}}
$$

Example

$$
\alpha=\sum_{k=1}^{\infty} \frac{1}{10^{k!}}
$$

is a Liouville number.
Verification Let α_{N} be the sum of the first N terms so

$$
\begin{aligned}
\alpha_{N} & =\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{6}}+\ldots+\frac{1}{10^{N!}} \\
& =\frac{10^{N!-1}+10^{N!-2}+\ldots+10^{N}+1}{10^{N!}} \\
& =\frac{10 n+1}{10^{N!}}=\frac{p}{10^{N!}},
\end{aligned}
$$

for some integer p, of the form $10 n+1$ and so coprime to $10^{N!}$. Then

$$
\begin{aligned}
\left|\frac{p}{10^{N!}}-\alpha\right| & =\frac{1}{10^{(N+1)!}}+\frac{1}{10^{(N+2)!}}+\frac{1}{10^{(N+3)!}}+\ldots \\
& <\frac{2}{10^{(N+1)!}}<\frac{1}{\left(10^{N!}\right)^{N}}
\end{aligned}
$$

So for every N we can find a very good rational approximation to α, so α is a Liouville number.
Theorem 7
Every Liouville number is transcendental.

Proof

Assume not, so there exists a Liouville number α that is algebraic for some degree n. Note that $n>1$ since α is irrational. Then Theorem 6 implies that there exists $M \geq 1$ such that

$$
\left|\alpha-\frac{p}{q}\right|>\frac{1}{M q^{n}}
$$

for all integers $p, q>0$. Choose an integer $k \geq n$ such that $2^{k}>2^{n} M$. Then since α is Liuoville we can find integers $p, q>0$ such that

$$
\left|\frac{p}{q}-\alpha\right|<\frac{1}{q^{k}}<\frac{1}{M q^{n}}
$$

by the choice of k. This is a contradiction so the assumption is false and every Liouville number is transcendental.

Let E be the set of all Liouville numbers.

Theorem 8

The set E has zero Lebesgue measure in $[0,1]$.
Proof By definition $\alpha \in E$ if, and only if, $\alpha \in \mathbb{Q}^{c}$ and for all $k \geq 1$ there exist integers $p>0$ and q such that

$$
\left|\frac{p}{q}-\alpha\right|<\frac{1}{q^{k}}
$$

So

$$
\begin{aligned}
E & =\mathbb{Q}^{c} \cap \bigcap_{k=1}^{\infty} \bigcup_{p=-\infty}^{+\infty} \bigcup_{q \geq 2}\left(\frac{p}{q}-\frac{1}{q^{k}}, \frac{p}{q}+\frac{1}{q^{k}}\right) \\
& =\mathbb{Q}^{c} \cap \bigcap_{k=1}^{\infty} G_{k},
\end{aligned}
$$

say. Note that

$$
G_{k} \cap[0,1] \subseteq \bigcup_{q \geq 2} \bigcup_{p=0}^{q}\left(\frac{p}{q}-\frac{1}{q^{k}}, \frac{p}{q}+\frac{1}{q^{k}}\right)
$$

Let μ be the Lebesgue measure on \mathbb{R}. Then

$$
\begin{aligned}
\mu\left(G_{k} \cap[0,1]\right) & \leq \sum_{q \geq 2} \sum_{p=0}^{q} \mu\left(\frac{p}{q}-\frac{1}{q^{k}}, \frac{p}{q}+\frac{1}{q^{k}}\right) \\
& =\sum_{q \geq 2} \sum_{p=0}^{q} \frac{2}{q^{k}} \\
& =\sum_{q \geq 2} \frac{2(q+1)}{q^{k}} \\
& \leq 4 \sum_{q \geq 2} \frac{1}{q^{k-1}} .
\end{aligned}
$$

To bound this sum observe that

$$
\frac{1}{q^{k-1}}<\int_{q-1}^{q} \frac{d t}{t^{k-1}}
$$

since $t^{k-1} \leq q^{k-1}$ in the range of the integral. Adding gives

$$
\sum_{q \geq 2} \frac{1}{q^{k-1}}<\int_{1}^{\infty} \frac{d t}{t^{k-1}}=\frac{1}{k-2}
$$

Hence $\mu\left(G_{k} \cap[0,1]\right) \leq 4 /(k-2)$. But $E \cap[0,1] \subseteq G_{k} \cap[0,1]$ for all k so $\mu(E \cap[0,1]) \leq 4 /(k-2)$ for all $k \geq 2$. Hence $\mu(E \cap[0,1])=0$.

