Applications of the course to Number Theory

Rational Approximations

Theorem 1 (Dirichlet)
If & is real and irrational then there are infinitely many distinct rational
numbers p/q such that
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Proof Let Q > 1 be given. For a real number « let [a] be the largest
integer no greater than «, called the integer part of a and set {a} = a —
[a], the fractional part of o. Consider the fractional parts {0}, {&}, {26},
{3¢},....{Q¢&} and the intervals [i/Q, (i + 1)/Q],0 < i < @ — 1. There are
@ + 1fractional parts distributed amongst the @) intervals. So there must
exist some interval containing at least two of the fractional parts, i.e. {a&}
and {06}, 0 < a < b < @, say, lying in [j/Q,(j + 1)/Q]. Being in the
same interval means that [{0{} — {a&}| < 1/Q. Write a§ = m + {a&} and
b¢ = n + {b&} for appropriate integers m and n. Then

{0} —{a} = (€ —n) — (a§ —m) = (b — a)§ — (n —m).
Writing g =b—aso 0 < ¢ <@ and p =n —m we find that we can solve

D 1
e-2<—
‘ q] 4@
for some 0 < ¢ < @). Since this is true for all () this gives the infinity of
solutions for (4) (noting that 1/¢Q < 1/¢* when q < Q). |

This can be improved

Theorem 2 (Hurwitz)
If & is real and irrational then there are infinitely many distinct rational
numbers p/q such that
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Proof Not given (The easiest way is to used continued fractions.) n

The constant /5 is best possible, in that the result does not hold if it
is replaced by a larger value. So if ¢ > /5 then there exist irrational & for
which there are only finitely many distinct p/q satisfying |€ — p/q| < 1/cq>.
In particular ¢ = (1 + v/5)/2 would be such an exception. Yet it can be
shown that the number of exceptions are relatively rare.
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Theorem 3
If f(q)/q increases with q and
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1s divergent then, for almost all & we can find an infinite sequence of distinct
rationals p/q,q > 0 satisfying
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Proof Not given |
This result shows that orders of approximation such as
1 1
<——— and <
q*logq q*log qloglog ¢

are usually possible, for almost all £.
I leave it as an exercise to the student to prove that

o [e.e]
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and
qugq qugqloglogq
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diverge. (The easiest method is to bound above by integrals.)
Though we don’t give the proof of Theorem 3 we do prove a (partial)
converse below.

Borel Cantelli Lemma

Observation Let A;,7 > 1 be an infinite collection of sets. An element x
will lie in finitely many of these A;, if and only if

AN >1:Yn> N,z ¢ A,.

So the element x will belong to infinitely many of these A; if and only if

“(IN>1:Yn> N,z ¢ A,)
= VN>1,3n>N:—-(z ¢ A,)
= VN>1,7n >N :x € A,

xeﬂ UAk'

N>1k>N



Theorem 4 (Borel Cantelli Lemma) If Ay, Ay, ... € F and Y-, u(4;) < oo
then

u{x : zbelongs to infinitely many A;} = 0.
Proof
By the observation it suffices to prove that

u(ﬂ UAk>:0~

N>1k>N

Let € > 0 be given. By the definition of convergence of the series in the
assumptions we have that there exists M > 1 such that

Z (A < e.

For this M we also have

N U A< 4

N>1k>N k>M

Hence

1 (ﬂN21 UkZN Ak> < (UkZM Ak> since p is monotone,

< o0 . . . _ . .
< Zi:M u(A;)  since p is sub-additive,
<e€

True for all € > 0 implies the required result. |

Theorem 4 has many applications in Probability Theory but here we give
one in Number Theory, concerning rational approximations.
Theorem 5 Let f: N — R be given. Define D C [0,1] by o € D if, and
only if, there exist infinitely many p/q, p,q € Z, p > 0 such that

Then if
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we have that the Lebesgue measure of D is zero.
Proof Define

A, = p__ 1 p, 1 )
! oy@(q MO RRILC)

Then a € D if, and only if, o € A, N[0, 1] for infinitely many ¢, so it suffices
to show, subject to (2), that u (ﬂN21 Uz (Ax N[0, 1])) = 0. Yet

o= @) T afle) — flg)
Hence
S H(AN0I) Y s <o
g ~ f(a)
So the sets A, N [0, 1] satisfy the conditions of Theorem 4 and hence
H (ﬂNZl Uk;ZN(Ak N 10, 1])) = 0, that is, u(D) = 0. L
Note This theorem shows that Dirichlet’s result cannot be extended to
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for instance, for many £. (I'll leave it to the student to check that
>

~ ¢*log’q

converges but agin the easiest way is to bound the sum from above by an
integral.)

It is obvious that this result is a partial converse of Theorem 3, where
we also needed that f(q)/q increases with ¢. For such f we see that there
are two cases for the sum in (2), it either diverges as in Theorem 3, when a
property holds for almost all numbers, or the sum converges as in Theorem
5, when the property holds for almost no number. We say that the property
satisfies a zero-one law (There is never a case “in the middle”.)

As remarked above this shows that Dirichlet’s result on approximations
cannot be substantially improved for all £. Yet there are numbers & that
have exceptionally good approximations.

6 Liouville numbers



Theorem 6 For any algebraic number « of degree n > 1 there exists M =
M («) > 1 such that
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for all integers p,q,p > 0.
Proof If p/q is chosen such that
o — ]—9’ > 1
q

then the result is trivial so assume that p/q satisfies |[ga — p| < q.
Assume « is a root of

f(z) = ag + a17 + ag2® + ... + a,a™,

where a; € Z. Given any p/q we must have f(p/q) # 0 for if not we would
be able to write f(z) = (gx — p)g(x) for some polynomial g with integer
coefficients but with degg = n — 1. Also, since « is algebraic of degree
strictly greater than 1, we have that g(a) = 0 in which case « is algebraic of
degree < n — 1. This would be a contradiction.

So

P\ _ aoq" +aipg" T + ap*q" ! + .+ anp”
er(2)- : |
q q
Thus agq" + a1pg” ' + asp?q" ' + ... + a,p" is an integer since all p, ¢, a; € Z
not equal to zero. Hence (and this is the “trick”) we must have |aoq" +
a1pq™t + asp* ¢ + ...+ ap”| > 1 and

()

For a real number x close to a we can use the Mean Value Theorem to
get

[f (@) = (@) = f@)| = [f (Ol — o

for some ( : | — a| < |a — z|. Choose x = p/q which by assumption above
satisfies |p/q — a| < 1 and so ( satisfies |( — a| < |p/q — a] < 1. Define

M = sup(L, [f'(Q)| : [¢ —af <1).
Then, combining with (3) gives
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which is the required result. |

Example We can follow the method of proof of the above theorem when
a = (14++5)/2. Then f(z) = 2> —x — 1 and f'(z) = 22 — 1. As we take
better approximations p/q to a then ¢, which lies between « and p/q must
get closer to a, that is, | f/(¢)| must get closer to |f'(a)| = v/5. So we can
take M no smaller than /5, confirming the optimal nature of the Theorem
of Hurwitz above.

Liouville’s Theorem has been improved such that given any algebraic
number (whatever its degree) and any x > 2 then there exists a constant
¢ = c(a, k) with
o Iz‘ .G

q q"
for all rationals p/q. From Dirichlet’s Theorem this is seen to be best possible
in that we cannot take k < 2. Strangely, there is no known formulae or
method for calculating c(a, k) in general. Only for some particular a and k
is it known. For instance, ¢(v/2,2.955) > 1079, that is,

1076
v_f_" .

q q2.955

for all rationals p/q.

Definition A real number « is a Liouville number if « is irrational and for
all n > 1 there exists integers p, ¢ > 0 such that
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Example

is a Liouville number.

Verification Let o be the sum of the first N terms so
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for some integer p, of the form 10n + 1 and so coprime to 10, Then

p 1 1 1
‘10N! - Oz‘ o 10(N-+1)! + 10V +2)! + 10NV +3)! +
2 1

10V+1)! < (10N!)N'

So for every N we can find a very good rational approximation to «, so « is
a Liouville number.

Theorem 7
Fvery Liouville number is transcendental.

Proof

Assume not, so there exists a Liouville number « that is algebraic for
some degree n. Note that n > 1 since « is irrational. Then Theorem 6
implies that there exists M > 1 such that

P 1
a__

q Mg

for all integers p, ¢ > 0. Choose an integer k > n such that 2 > 2"M. Then
since « is Liuoville we can find integers p, ¢ > 0 such that
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by the choice of k. This is a contradiction so the assumption is false and
every Liouville number is transcendental. ]

Let E be the set of all Liouville numbers.
Theorem 8
The set E has zero Lebesgue measure in [0, 1].

Proof By definition o € E if, and only if, a € Q° and for all £ > 1 there
exist integers p > 0 and ¢ such that



So

p-en) JU(®-52+7)
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k= lp*—oo q>2 q
= QN ﬂ G,
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say. Note that

GrN[0,1] C UU(———— lk)

q>2 p=0 q

Let p be the Lebesgue measure on R. Then

p(@nb1) < 3 ( ik§+l’“>

q>2 p=0 q

ZZ

q>2 p= 0

_ ZQ(q—i—l)

k
q>2 q

1
4ZF'

q=>2

IN

To bound this sum observe that
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since t*~! < ¢*~! in the range of the integral. Adding gives

L /mi 1
= qkfl 1 tk—1 kE—2
Hence 4 (G, N [0,1]) < 4/(k—2). But £EN[0,1

] kN [0,1] for all £ so
w(EN[0,1]) <4/(k —2) for all k > 2. Hence p (F

C G
n10,1)) =0. u



