5 Product Spaces

Recall $X \times Y = \{(x, y) : x \in X, y \in Y\}$. A rectangle is any set $E \times F \subseteq X \times Y$.

Theorem 5.1

If C_i , i = 1, 2 are semi-rings in X_i , i = 1, 2 respectively then $C_1 \times C_2$ is a semi-ring in $X_1 \times X_2$.

Proof

Let $E_1 \times F_1, E_2 \times F_2 \in \mathcal{C}_1 \times \mathcal{C}_2$. Then

$$(E_1 \times F_1) \cap (E_2 \times F_2) = (E_1 \cap E_2) \times (F_1 \cap F_2)$$

 $\in \mathcal{C}_1 \times \mathcal{C}_2 \text{ since } \mathcal{C}_1 \text{ and } \mathcal{C}_2 \text{ are semi-rings.}$

The result obviously extends to infinite intersections.

For differences observe that

$$(E_1 \times F_1) \setminus (E_2 \times F_2) = ((E_1 \setminus E_2) \times (F_1 \setminus F_2)) \cup ((E_1 \cap E_2) \times (F_1 \setminus F_2)) \cup ((E_1 \setminus E_2) \times (F_1 \cap F_2)),$$

a disjoint union. (This is most easily seen in a diagram.) And since C_1 is a semi-ring we can write $E_1 \setminus E_2 = \bigcup_{i=3}^m E_i$ for some disjoint $E_i \in C_1$. Similarly $F_1 \setminus F_2 = \bigcup_{j=3}^n F_j$ for some disjoint $F_i \in C_2$. Thus

$$(E_1 \times F_1) \setminus (E_2 \times F_2) = \bigcup_{i=3}^m \bigcup_{j=3}^n (E_i \times F_j)$$
$$\cup \bigcup_{j=3}^n ((E_1 \cap E_2) \times F_j) \cup \bigcup_{i=3}^m (E_i \times (F_1 \cap F_2)),$$

a finite union of disjoint sets of $C_1 \times C_2$ as required.

Note If $\mathcal{E}_i, i = 1, 2$ are σ -fields in X_i respectively then $\mathcal{E}_1 \times \mathcal{E}_2$ need not be a σ -field in $X_1 \times X_2$.

Definition The product σ -field of \mathcal{E}_1 and \mathcal{E}_2 , denoted by $\mathcal{E}_1 * \mathcal{E}_2$ is the minimal σ -field containing $\mathcal{E}_1 \times \mathcal{E}_2$.

Definition For $A \subseteq X \times Y$ the section of A at $x \in X$ is

$$A_x = \{y : (x, y) \in A\},\$$

while the section of A at $y \in Y$ is

$$A^{y} = \{ x : (x, y) \in A \}.$$

Theorem 5.2 Let (X, \mathcal{F}) and (Y, \mathcal{G}) be measurable spaces. Then if $A \in \mathcal{F} * \mathcal{G}$ we have

$$A_x \in \mathcal{G}$$
 for all $x \in X$,

$$A^y \in \mathcal{F}$$
 for all $y \in Y$.

Proof Let

$$\mathcal{C} = \{ E \subseteq X \times Y : E_x \in \mathcal{G} \text{ for all } x \in X \}.$$

If $G \times H \in \mathcal{F} \times \mathcal{G}$ then

$$(G \times H)_x = \begin{cases} H & \text{if } x \in \mathcal{G} \\ \emptyset & \text{if } x \notin \mathcal{G} \end{cases}$$

In both cases the result is in \mathcal{G} as is required for inclusion in \mathcal{C} , hence $\mathcal{F} \times \mathcal{G} \subseteq \mathcal{C}$.

Claim \mathcal{C} is a σ -field.

Simply note that $\left(\bigcup_{n=1}^{\infty} E_n\right)_x = \bigcup_{n=1}^{\infty} (E_n)_x$ and

$$(E_1 \setminus E_2)_x = \begin{cases} (E_1)_x & \text{if } x \in (E_1)_y \setminus (E_2)_y \\ (E_1)_x \setminus (E_2)_x & \text{if } x \in (E_1)_y \cap (E_2)_y \\ \phi & \text{otherwise.} \end{cases}$$

So, since \mathcal{G} is a σ -field, we obtain the claim.

Thus \mathcal{C} is a σ -field containing $\mathcal{F} \times \mathcal{G}$ whilst $\mathcal{F} * \mathcal{G}$ is the minimal such σ -field. Hence $\mathcal{F} * \mathcal{G} \subseteq \mathcal{C}$.

So if $A \in \mathcal{F} * \mathcal{G}$ then A satisfies the condition defining the collection \mathcal{C} , namely $A_x \in \mathcal{G}$ for all $x \in X$.

Similarly, for A^y examine $\mathcal{D} = \{E \subseteq X \times Y : E^y \in \mathcal{F} \text{ for all } y \in Y\}$.

(Note how the form of this proof is very similar to that of Corollary 1.5 and Theorem 1.7 in the notes.)

Our aim now is, given measure spaces (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) to define a measure on the *Product Measurable Space* $(X \times Y, \mathcal{F} * \mathcal{G})$. We shall show how to use integration to give a measure (*The Product Measure*) on this space.

Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be σ -finite measure spaces.

Lemma 5.1

For all $A \in \mathcal{F} * \mathcal{G}$ the ν -measure of an x-section, $\nu(A_x) : X \to \mathbb{R}^*$, is an \mathcal{F} -measurable function.

Proof Not given.

Note The situation is symmetric so $\mu(A^y) : Y \to \mathbb{R}^*$ is an \mathcal{G} -measurable function.

Theorem 5.3 The set function

$$\lambda(A) = \int_X \nu(A_x) d\mu \tag{1}$$

is a measure on $\mathcal{F} * \mathcal{G}$.

Proof Not given.

Notation I will write $\lambda = \nu * \mu$, though this is non-standard. But now we have a measure space $(X \times Y, \mathcal{F} * \mathcal{G}, \nu * \mu)$.

For $C \times D \in \mathcal{F} * \mathcal{G}$ we have

$$\nu((C \times D)_x) = \begin{cases} \nu(D) & \text{if } x \in C \\ 0 & \text{otherwise.} \end{cases}$$

This is a simple function so the integral (1) simply evaluates as $\lambda(C \times D) = \nu(D)\mu(C)$. So λ extends the measure $\nu \times \mu$. From Theorem 2.12, if μ and ν are σ -finite then such extensions are unique. But by symmetry, $\int_Y \mu(A^y) d\nu$ is also a measure on $\mathcal{F} * \mathcal{G}$ extending $\nu \times \mu$. So by uniqueness,

$$\int_X \nu(A_x) d\mu = \int_Y \mu(A^y) d\nu.$$
(2)

If $g: X \times Y \to \mathbb{R}^*$ let $g_x: Y \to \mathbb{R}^*$ be given by $g_x(y) = g(x, y)$ and $g^y: X \to \mathbb{R}^*$ by $g^y(x) = g(x, y)$. Then

Lemma 5.2

If $g: X \times Y \to \mathbb{R}^*$ is $\mathcal{F} * \mathcal{G}$ -measurable then g_x is \mathcal{G} -measurable and g^y is \mathcal{F} -measurable.

Proof From the definition, g being $\mathcal{F} * \mathcal{G}$ -measurable means that

 $\{(x,y):g(x,y)>c\}\in \mathcal{F}\ast\mathcal{G}\quad\text{for all }c\in\mathbb{R},$

in which case, by Theorem 5.2,

$$\{(x,y): g(x,y) > c\}_x \in \mathcal{G} \text{ for all } c \in \mathbb{R},$$

and so

$$\{y: g_x(y) > c\} \in \mathcal{G} \quad \text{for all } c \in \mathbb{R}.$$

Hence g_x is \mathcal{G} -measurable. Similarly for g^y .

We now come to an important result that expresses integration with respect to a product measure in terms of iterated integrals with respect to the two original measures. It is, in fact, most often used to justify the interchange of integrals.

Theorem 5.4 (Fubini) Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be σ -finite measure spaces and $\lambda = \mu * \nu$. Let $g: X \times Y \to \mathbb{R}^*$ be $\mathcal{F} * \mathcal{G}$ -measurable. (i) If g is non-negative then the functions

$$\alpha(x) = \int_{Y} g_x d\nu \quad and \quad \beta(y) = \int_{X} g^y d\mu$$

are measurable and

$$\int_{X \times Y} g d\lambda = \int_{X} \left(\int_{Y} g_{x} d\nu \right) d\mu = \int_{Y} \left(\int_{X} g^{y} d\mu \right) d\nu.$$
(3)

(ii) If $g: X \times Y \to \mathbb{R}^*$ is λ -integrable then g_x is ν -integrable for almost all x, g^y is μ -integrable for almost all y and (3) holds.

(iii) If $g: X \times Y \to \mathbb{R}^*$ is $\mathcal{F} * \mathcal{G}$ -measurable and

$$\int\limits_X \left(\int\limits_Y |g_x| \, d\nu \right) d\mu < \infty$$

then $g: X \times Y \to \mathbb{R}^*$ is λ -integrable.

Proof

(i) This is done in the same stages as found in the proof of Lemma 2.13. Consider first $g = \chi_A$ for some $A \in \mathcal{F} \times \mathcal{G}$. Then

$$\begin{aligned} \alpha(x) &= \int_{Y} (\chi_A)_x \, d\nu \\ &= \nu \left\{ y : (\chi_A)_x \, (y) = 1 \right\} \\ &= \nu \{y : (x, y) \in A \} \\ &= \nu(A_x), \end{aligned}$$
 since $(\chi_A)_x$ is a simple function,

which is measurable by Lemma 5.1. Similarly for $\beta(y)$.

We can now compare the integrals. For g we have

$$\int\limits_{X\times Y} gd\lambda = \int\limits_{X\times Y} \chi_A d\lambda = \lambda(A)$$

by definition of integration of a simple function such as χ_A . Also

$$\int_X \alpha(x) d\mu = \int_X \nu(A_x) d\mu$$

= $\lambda(A)$ by definition (1) of λ .

Thus we get one of the equalities in (3). The other follows from using (2). Secondly, for

$$g = \sum_{i=1}^{n} a_i \chi_{A_i},$$

a simple function, then

$$\alpha(x) = \sum_{i=1}^{n} a_i \nu(A_{ix}),$$

a finite sum of measurable functions hence measurable. Further

$$\int_{X \times Y} g d\lambda = \sum_{i=1}^n a_i \lambda(A_i)$$

while

$$\int_X \alpha(x) d\mu = \sum_{i=1}^n a_i \int_X \nu(A_{ix}) d\mu$$
$$= \sum_{i=1}^n a_i \lambda(A_i).$$

So (3) holds for simple functions.

Finally, given a non-negative g choose a sequence of simple, measurable functions $\{g_n\}_{n\geq 1}$ increasing to g. Then $\{g_{nx}\}_{n\geq 1}$ and $\{g_n^y\}_{n\geq 1}$ are similar sequences converging to g_x and g^y respectively. We can apply Lebesgue's Monotone Convergence Theorem, obtaining

$$\alpha(x) = \int_Y g_x d\nu = \lim_{n \to \infty} \int_Y g_{nx} d\nu,$$

which is the limit of measurable functions, by the second part above, hence measurable. Similarly for $\beta(y)$.

So now $\{\int_Y g_{nx} d\nu\}_{n\geq 1}$ is an increasing sequence of non-negative measurable functions and we can apply Theorem 4.11 again. Thus

$$\begin{split} \int_{X} \alpha(x) d\mu &= \int_{X} \left(\lim_{n \to \infty} \int_{Y} g_{nx} d\nu \right) d\mu \\ &= \lim_{n \to \infty} \int_{X} \left(\int_{Y} g_{nx} d\nu \right) d\mu \quad \text{by Theorem 4.11,} \\ &= \lim_{n \to \infty} \int_{X \times Y} g_{n} d\lambda \qquad \qquad \text{since (3) holds for} \\ &= \int_{X \times Y} g d\lambda \qquad \qquad \text{by Theorem 4.11 again.} \end{split}$$

Thus we get one of the equalities in (3). The other follows from using (2). Hence (3) holds for non-negative g.

(ii) Assuming now that g is λ -integrable implies that both g^+ and g^- are λ -integrable and in particular, $\mathcal{F} * \mathcal{G}$ -measurable. Apply (i) to g^+ and g^- . Let

$$\alpha^{\pm}(x) = \int_{Y} g_x^{\pm} d\nu.$$
(4)

Then (3) for non-negative functions implies

$$\int_{X} \alpha^{\pm}(x) d\mu = \int_{X \times Y} g^{\pm} d\lambda$$

< ∞ since g is λ -integrable.

So, by Lemma 4.5 both α^+ and α^- are finite except, possibly, on (perhaps different) sets of μ -measure zero.

But $\alpha^{\pm}(x) < \infty$ a.e. (μ) implies

$$\int_Y g_x^\pm d\nu = \alpha^\pm(x) < \infty$$

a.e. (μ) , in which case g_x^{\pm} are ν -integrable a.e. (μ) . So outside the union of the two sets of μ -measure zero $g_x = g_x^+ - g_x^-$ is ν -integrable. Similarly for g^y .

Now apply (3) for non-negative functions to both g^+ and g^- separately and subtract to get (3) for g.

(iii) Recall from an earlier note that if g is $\mathcal{F} * \mathcal{G}$ -measurable then |g| is also $\mathcal{F} * \mathcal{G}$ -measurable and, trivially, it is non-negative. So by (i)

$$\int_{X \times Y} |g| d\lambda = \int_X \left(\int_Y |g| d\nu \right) d\mu$$

< ∞ by assumption.

So |g| is λ -integrable and thus g is λ -integrable. Thus we are back to case (ii).

Example Let

$$g(x,y) = \begin{cases} e^{-y} \sin 2xy & \text{on } [0,1 \times [0,\infty) \\ 0 & \text{elsewhere} \end{cases}$$

Let λ be the product measure on $\mathcal{L} * \mathcal{L}$. Claim q is λ -integrable. Note that $|g| \leq e^{-y}$ so, by Corollary 4.18 it suffices to show that $e^{-y} \in \mathcal{L}(\lambda)$. But e^{-y} is the limit of an increasing sequence of non-negative λ -measurable simple functions, for example,

$$h_N(x,y) = \sum_{n \le N^2} e^{-n/N} \chi_{A_{n,N}}$$

where

$$A_{n,N} = [0,1] \times \left[\frac{n-1}{N}, \frac{n}{N}\right].$$

Then $\lambda(A_{n,N}) = \frac{1}{N}$, that is, the set is λ -measurable. Hence e^{-y} is λ -measurable. All functions are non-negative so, by Lebesgue's Monotone Convergence Theorem,

$$\int_{[0,1]\times[0,\infty)} e^{-y} d\lambda = \lim_{N\to\infty} \int_{[0,1]\times[0,\infty)} h_N d\lambda$$
$$= \lim_{N\to\infty} \sum_{n\leq N^2} \int_{(n-1)/N}^{n/N} e^{-n/N} dy$$
$$\leq \lim_{N\to\infty} \sum_{n\leq N^2} \int_{(n-1)/N}^{n/N} e^{-y} dy$$
$$= \lim_{N\to\infty} \int_0^N e^{-y} dy$$
$$= 1.$$

Hence $e^{-y} \in \mathcal{L}(\lambda)$ as required and the claim is verified.

Then by Theorem 5.4(ii) we have

$$\int_{0}^{1} \int_{0}^{\infty} e^{-y} \sin 2xy dy dx = \int_{0}^{\infty} \int_{0}^{1} e^{-y} \sin 2xy dy dx.$$
 (5)

But, on integrating by parts,

$$\int_0^\infty e^{-y} \sin 2xy dy = \frac{2x}{1+4x^2}$$

so the left hand side of (5) equals

$$\int_0^1 \frac{2x}{1+4x^2} dx = \frac{1}{4}\log 5.$$

The right hand side of (5) contains

$$\int_0^1 e^{-y} \sin 2xy \, dy = \frac{e^{-y} \sin^2 y}{y}.$$

Hence (5) gives

$$\int_0^\infty \frac{e^{-y} \sin^2 y}{y} dy = \frac{1}{4} \log 5.$$

Note that a lot of the above example was directed at showing the function to be μ_2 -integrable. This can be weakened to \mathcal{L}^2 -measurable. It is possible to extend Fubini's result, proving

Theorem 5.5 Let g be Lebesgue (i.e. \mathcal{L}^2)-measurable on \mathbb{R}^2 and assume that the iterated improper Riemann integrals

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) dx dy \quad and \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) dy dx$$

exist and are finite. If one of the integrals

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g(x,y)| dx dy \quad and \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g(x,y)| dy dx \quad (6)$$

is finite, then the integrals of (3) are equal.

Proof Not given.

Note how we can check either of the conditions in (6). Often one of there iterated integrals is easier to evaluate than the other.