5 Product Spaces

Recall $X \times Y=\{(x, y): x \in X, y \in Y\}$. A rectangle is any set $E \times F \subseteq$ $X \times Y$.

Theorem 5.1

If $\mathcal{C}_{i}, i=1,2$ are semi-rings in $X_{i}, i=1,2$ respectively then $\mathcal{C}_{1} \times \mathcal{C}_{2}$ is a semi-ring in $X_{1} \times X_{2}$.
Proof
Let $E_{1} \times F_{1}, E_{2} \times F_{2} \in \mathcal{C}_{1} \times \mathcal{C}_{2}$. Then

$$
\begin{aligned}
\left(E_{1} \times F_{1}\right) \cap\left(E_{2} \times F_{2}\right) & =\left(E_{1} \cap E_{2}\right) \times\left(F_{1} \cap F_{2}\right) \\
& \in \mathcal{C}_{1} \times \mathcal{C}_{2} \quad \text { since } \mathcal{C}_{1} \text { and } \mathcal{C}_{2} \text { are semi-rings. }
\end{aligned}
$$

The result obviously extends to infinite intersections.
For differences observe that

$$
\begin{aligned}
&\left(E_{1} \times F_{1}\right) \backslash\left(E_{2} \times F_{2}\right)=\left(\left(E_{1} \backslash E_{2}\right) \times\left(F_{1} \backslash F_{2}\right)\right) \\
& \cup\left(\left(E_{1} \cap E_{2}\right) \times\left(F_{1} \backslash F_{2}\right)\right) \\
& \cup\left(\left(E_{1} \backslash E_{2}\right) \times\left(F_{1} \cap F_{2}\right)\right),
\end{aligned}
$$

a disjoint union. (This is most easily seen in a diagram.) And since \mathcal{C}_{1} is a semi-ring we can write $E_{1} \backslash E_{2}=\bigcup_{i=3}^{m} E_{i}$ for some disjoint $E_{i} \in \mathcal{C}_{1}$. Similarly $F_{1} \backslash F_{2}=\bigcup_{j=3}^{n} F_{j}$ for some disjoint $F_{i} \in \mathcal{C}_{2}$. Thus

$$
\begin{aligned}
\left(E_{1} \times F_{1}\right) \backslash\left(E_{2} \times F_{2}\right)= & \bigcup_{i=3}^{m} \bigcup_{j=3}^{n}\left(E_{i} \times F_{j}\right) \\
& \cup \bigcup_{j=3}^{n}\left(\left(E_{1} \cap E_{2}\right) \times F_{j}\right) \cup \bigcup_{i=3}^{m}\left(E_{i} \times\left(F_{1} \cap F_{2}\right)\right),
\end{aligned}
$$

a finite union of disjoint sets of $\mathcal{C}_{1} \times \mathcal{C}_{2}$ as required.
Note If $\mathcal{E}_{i}, i=1,2$ are σ-fields in X_{i} respectively then $\mathcal{E}_{1} \times \mathcal{E}_{2}$ need not be a σ-field in $X_{1} \times X_{2}$.
Definition The product σ-field of \mathcal{E}_{1} and \mathcal{E}_{2}, denoted by $\mathcal{E}_{1} * \mathcal{E}_{2}$ is the minimal σ-field containing $\mathcal{E}_{1} \times \mathcal{E}_{2}$.
Definition For $A \subseteq X \times Y$ the section of A at $x \in X$ is

$$
A_{x}=\{y:(x, y) \in A\}
$$

while the section of A at $y \in Y$ is

$$
A^{y}=\{x:(x, y) \in A\} .
$$

Theorem 5.2 Let (X, \mathcal{F}) and (Y, \mathcal{G}) be measurable spaces. Then if $A \in$ $\mathcal{F} * \mathcal{G}$ we have

$$
\begin{array}{ll}
A_{x} \in \mathcal{G} & \text { for all } x \in X, \\
A^{y} \in \mathcal{F} & \text { for all } y \in Y
\end{array}
$$

Proof Let

$$
\mathcal{C}=\left\{E \subseteq X \times Y: E_{x} \in \mathcal{G} \text { for all } x \in X\right\}
$$

If $G \times H \in \mathcal{F} \times \mathcal{G}$ then

$$
(G \times H)_{x}= \begin{cases}H & \text { if } x \in \mathcal{G} \\ \emptyset & \text { if } x \notin \mathcal{G}\end{cases}
$$

In both cases the result is in \mathcal{G} as is required for inclusion in \mathcal{C}, hence $\mathcal{F} \times \mathcal{G} \subseteq \mathcal{C}$.
Claim \mathcal{C} is a σ-field.
Simply note that $\left(\bigcup_{n=1}^{\infty} E_{n}\right)_{x}=\bigcup_{n=1}^{\infty}\left(E_{n}\right)_{x}$ and

$$
\left(E_{1} \backslash E_{2}\right)_{x}= \begin{cases}\left(E_{1}\right)_{x} & \text { if } x \in\left(E_{1}\right)_{y} \backslash\left(E_{2}\right)_{y} \\ \left(E_{1}\right)_{x} \backslash\left(E_{2}\right)_{x} & \text { if } x \in\left(E_{1}\right)_{y} \cap\left(E_{2}\right)_{y} \\ \phi & \text { otherwise }\end{cases}
$$

So, since \mathcal{G} is a σ-field, we obtain the claim.
Thus \mathcal{C} is a σ-field containing $\mathcal{F} \times \mathcal{G}$ whilst $\mathcal{F} * \mathcal{G}$ is the minimal such σ-field. Hence $\mathcal{F} * \mathcal{G} \subseteq \mathcal{C}$.

So if $A \in \mathcal{F} * \mathcal{G}$ then A satisfies the condition defining the collection \mathcal{C}, namely $A_{x} \in \mathcal{G}$ for all $x \in X$.

Similarly, for A^{y} examine $\mathcal{D}=\left\{E \subseteq X \times Y: E^{y} \in \mathcal{F}\right.$ for all $\left.y \in Y\right\}$.
(Note how the form of this proof is very similar to that of Corollary 1.5 and Theorem 1.7 in the notes.)

Our aim now is, given measure spaces (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) to define a measure on the Product Measurable Space $(X \times Y, \mathcal{F} * \mathcal{G})$. We shall show how to use integration to give a measure (The Product Measure) on this space.

Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be σ-finite measure spaces.

Lemma 5.1

For all $A \in \mathcal{F} * \mathcal{G}$ the ν-measure of an x-section, $\nu\left(A_{x}\right): X \rightarrow \mathbb{R}^{*}$, is an \mathcal{F}-measurable function.
Proof Not given.
Note The situation is symmetric so $\mu\left(A^{y}\right): Y \rightarrow \mathbb{R}^{*}$ is an \mathcal{G}-measurable function.

Theorem 5.3 The set function

$$
\begin{equation*}
\lambda(A)=\int_{X} \nu\left(A_{x}\right) d \mu \tag{1}
\end{equation*}
$$

is a measure on $\mathcal{F} * \mathcal{G}$.
Proof Not given.
Notation I will write $\lambda=\nu * \mu$, though this is non-standard. But now we have a measure space $(X \times Y, \mathcal{F} * \mathcal{G}, \nu * \mu)$.

For $C \times D \in \mathcal{F} * \mathcal{G}$ we have

$$
\nu\left((C \times D)_{x}\right)= \begin{cases}\nu(D) & \text { if } x \in C \\ 0 & \text { otherwise }\end{cases}
$$

This is a simple function so the integral (1) simply evaluates as $\lambda(C \times D)=$ $\nu(D) \mu(C)$. So λ extends the measure $\nu \times \mu$. From Theorem 2.12, if μ and ν are σ-finite then such extensions are unique. But by symmetry, $\int_{Y} \mu\left(A^{y}\right) d \nu$ is also a measure on $\mathcal{F} * \mathcal{G}$ extending $\nu \times \mu$. So by uniqueness,

$$
\begin{equation*}
\int_{X} \nu\left(A_{x}\right) d \mu=\int_{Y} \mu\left(A^{y}\right) d \nu \tag{2}
\end{equation*}
$$

If $g: X \times Y \rightarrow \mathbb{R}^{*}$ let $g_{x}: Y \rightarrow \mathbb{R}^{*}$ be given by $g_{x}(y)=g(x, y)$ and $g^{y}: X \rightarrow \mathbb{R}^{*}$ by $g^{y}(x)=g(x, y)$. Then

Lemma 5.2

If $g: X \times Y \rightarrow \mathbb{R}^{*}$ is $\mathcal{F} * \mathcal{G}$-measurable then g_{x} is \mathcal{G}-measurable and g^{y} is \mathcal{F}-measurable.
Proof From the definition, g being $\mathcal{F} * \mathcal{G}$-measurable means that

$$
\{(x, y): g(x, y)>c\} \in \mathcal{F} * \mathcal{G} \quad \text { for all } c \in \mathbb{R}
$$

in which case, by Theorem 5.2,

$$
\{(x, y): g(x, y)>c\}_{x} \in \mathcal{G} \quad \text { for all } c \in \mathbb{R}
$$

and so

$$
\left\{y: g_{x}(y)>c\right\} \in \mathcal{G} \quad \text { for all } c \in \mathbb{R}
$$

Hence g_{x} is \mathcal{G}-measurable. Similarly for g^{y}.
We now come to an important result that expresses integration with respect to a product measure in terms of iterated integrals with respect to the two original measures. It is, in fact, most often used to justify the interchange of integrals.
Theorem 5.4 (Fubini) Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be σ-finite measure spaces and $\lambda=\mu * \nu$. Let $g: X \times Y \rightarrow \mathbb{R}^{*}$ be $\mathcal{F} * \mathcal{G}$-measurable.
(i) If g is non-negative then the functions

$$
\alpha(x)=\int_{Y} g_{x} d \nu \quad \text { and } \quad \beta(y)=\int_{X} g^{y} d \mu
$$

are measurable and

$$
\begin{equation*}
\int_{X \times Y} g d \lambda=\int_{X}\left(\int_{Y} g_{x} d \nu\right) d \mu=\int_{Y}\left(\int_{X} g^{y} d \mu\right) d \nu . \tag{3}
\end{equation*}
$$

(ii) If $g: X \times Y \rightarrow \mathbb{R}^{*}$ is λ-integrable then g_{x} is ν-integrable for almost all x, g^{y} is μ-integrable for almost all y and (3) holds.
(iii) If $g: X \times Y \rightarrow \mathbb{R}^{*}$ is $\mathcal{F} * \mathcal{G}$-measurable and

$$
\int_{X}\left(\int_{Y}\left|g_{x}\right| d \nu\right) d \mu<\infty
$$

then $g: X \times Y \rightarrow \mathbb{R}^{*}$ is λ-integrable.
Proof
(i) This is done in the same stages as found in the proof of Lemma 2.13. Consider first $g=\chi_{A}$ for some $A \in \mathcal{F} \times \mathcal{G}$. Then

$$
\begin{aligned}
\alpha(x) & =\int_{Y}\left(\chi_{A}\right)_{x} d \nu \\
& =\nu\left\{y:\left(\chi_{A}\right)_{x}(y)=1\right\} \quad \text { since }\left(\chi_{A}\right)_{x} \text { is a simple function, } \\
& =\nu\{y:(x, y) \in A\} \\
& =\nu\left(A_{x}\right),
\end{aligned}
$$

which is measurable by Lemma 5.1. Similarly for $\beta(y)$.
We can now compare the integrals. For g we have

$$
\int_{X \times Y} g d \lambda=\int_{X \times Y} \chi_{A} d \lambda=\lambda(A)
$$

by definition of integration of a simple function such as χ_{A}. Also

$$
\begin{aligned}
\int_{X} \alpha(x) d \mu & =\int_{X} \nu\left(A_{x}\right) d \mu \\
& =\lambda(A) \text { by definition (1) of } \lambda
\end{aligned}
$$

Thus we get one of the equalities in (3). The other follows from using (2).
Secondly, for

$$
g=\sum_{i=1}^{n} a_{i} \chi_{A_{i}},
$$

a simple function, then

$$
\alpha(x)=\sum_{i=1}^{n} a_{i} \nu\left(A_{i x}\right),
$$

a finite sum of measurable functions hence measurable. Further

$$
\int_{X \times Y} g d \lambda=\sum_{i=1}^{n} a_{i} \lambda\left(A_{i}\right)
$$

while

$$
\begin{aligned}
\int_{X} \alpha(x) d \mu & =\sum_{i=1}^{n} a_{i} \int_{X} \nu\left(A_{i x}\right) d \mu \\
& =\sum_{i=1}^{n} a_{i} \lambda\left(A_{i}\right) .
\end{aligned}
$$

So (3) holds for simple functions.
Finally, given a non-negative g choose a sequence of simple, measurable functions $\left\{g_{n}\right\}_{n \geq 1}$ increasing to g. Then $\left\{g_{n x}\right\}_{n \geq 1}$ and $\left\{g_{n}^{y}\right\}_{n \geq 1}$ are similar sequences converging to g_{x} and g^{y} respectively. We can apply Lebesgue's Monotone Convergence Theorem, obtaining

$$
\alpha(x)=\int_{Y} g_{x} d \nu=\lim _{n \rightarrow \infty} \int_{Y} g_{n x} d \nu,
$$

which is the limit of measurable functions, by the second part above, hence measurable. Similarly for $\beta(y)$.

So now $\left\{\int_{Y} g_{n x} d \nu\right\}_{n \geq 1}$ is an increasing sequence of non-negative measurable functions and we can apply Theorem 4.11 again. Thus

$$
\begin{array}{rlrl}
\int_{X} \alpha(x) d \mu & =\int_{X}\left(\lim _{n \rightarrow \infty} \int_{Y} g_{n x} d \nu\right) d \mu & \\
& =\lim _{n \rightarrow \infty} \int_{X}\left(\int_{Y} g_{n x} d \nu\right) d \mu & & \text { by Theorem 4.11, } \\
& =\lim _{n \rightarrow \infty} \int_{X \times Y} g_{n} d \lambda & & \text { since (3) holds for } \\
& =\int_{X \times Y} g d \lambda & & \text { simple functions, }
\end{array}
$$

Thus we get one of the equalities in (3). The other follows from using (2). Hence (3) holds for non-negative g.
(ii) Assuming now that g is λ-integrable implies that both g^{+}and g^{-}are λ-integrable and in particular, $\mathcal{F} * \mathcal{G}$-measurable. Apply (i) to g^{+}and g^{-}. Let

$$
\begin{equation*}
\alpha^{ \pm}(x)=\int_{Y} g_{x}^{ \pm} d \nu \tag{4}
\end{equation*}
$$

Then (3) for non-negative functions implies

$$
\begin{aligned}
\int_{X} \alpha^{ \pm}(x) d \mu & =\int_{X \times Y} g^{ \pm} d \lambda \\
& <\infty \quad \text { since } g \text { is } \lambda \text {-integrable. }
\end{aligned}
$$

So, by Lemma 4.5 both α^{+}and α^{-}are finite except, possibly, on (perhaps different) sets of μ-measure zero.

But $\alpha^{ \pm}(x)<\infty$ a.e. (μ) implies

$$
\int_{Y} g_{x}^{ \pm} d \nu=\alpha^{ \pm}(x)<\infty
$$

a.e. (μ), in which case $g_{x}^{ \pm}$are ν-integrable a.e. (μ). So outside the union of the two sets of μ-measure zero $g_{x}=g_{x}^{+}-g_{x}^{-}$is ν-integrable. Similarly for g^{y}.

Now apply (3) for non-negative functions to both g^{+}and g^{-}separately and subtract to get (3) for g.
(iii) Recall from an earlier note that if g is $\mathcal{F} * \mathcal{G}$-measurable then $|g|$ is also $\mathcal{F} * \mathcal{G}$-measurable and, trivially, it is non-negative. So by (i)

$$
\begin{aligned}
\int_{X \times Y}|g| d \lambda & =\int_{X}\left(\int_{Y}|g| d \nu\right) d \mu \\
& <\infty \quad \text { by assumption. }
\end{aligned}
$$

So $|g|$ is λ-integrable and thus g is λ-integrable. Thus we are back to case (ii).

Example Let

$$
g(x, y)= \begin{cases}e^{-y} \sin 2 x y & \text { on }[0,1 \times[0, \infty) \\ 0 & \text { elsewhere }\end{cases}
$$

Let λ be the product measure on $\mathcal{L} * \mathcal{L}$.
Claim g is λ-integrable.

Note that $|g| \leq e^{-y}$ so, by Corollary 4.18 it suffices to show that $e^{-y} \in \mathcal{L}(\lambda)$. But e^{-y} is the limit of an increasing sequence of non-negative λ-measurable simple functions, for example,

$$
h_{N}(x, y)=\sum_{n \leq N^{2}} e^{-n / N} \chi_{A_{n, N}}
$$

where

$$
A_{n, N}=[0,1] \times\left[\frac{n-1}{N}, \frac{n}{N}\right]
$$

Then $\lambda\left(A_{n, N}\right)=\frac{1}{N}$, that is, the set is λ-measurable. Hence e^{-y} is λ measurable. All functions are non-negative so, by Lebesgue's Monotone Convergence Theorem,

$$
\begin{aligned}
\int_{[0,1] \times[0, \infty)} e^{-y} d \lambda & =\lim _{N \rightarrow \infty} \int_{[0,1] \times[0, \infty)} h_{N} d \lambda \\
& =\lim _{N \rightarrow \infty} \sum_{n \leq N^{2}} \int_{(n-1) / N}^{n / N} e^{-n / N} d y \\
& \leq \lim _{N \rightarrow \infty} \sum_{n \leq N^{2}} \int_{(n-1) / N}^{n / N} e^{-y} d y \\
& =\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-y} d y \\
& =1
\end{aligned}
$$

Hence $e^{-y} \in \mathcal{L}(\lambda)$ as required and the claim is verified.
Then by Theorem 5.4(ii) we have

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{\infty} e^{-y} \sin 2 x y d y d x=\int_{0}^{\infty} \int_{0}^{1} e^{-y} \sin 2 x y d y d x \tag{5}
\end{equation*}
$$

But, on integrating by parts,

$$
\int_{0}^{\infty} e^{-y} \sin 2 x y d y=\frac{2 x}{1+4 x^{2}}
$$

so the left hand side of (5) equals

$$
\int_{0}^{1} \frac{2 x}{1+4 x^{2}} d x=\frac{1}{4} \log 5
$$

The right hand side of (5) contains

$$
\int_{0}^{1} e^{-y} \sin 2 x y d y=\frac{e^{-y} \sin ^{2} y}{y}
$$

Hence (5) gives

$$
\int_{0}^{\infty} \frac{e^{-y} \sin ^{2} y}{y} d y=\frac{1}{4} \log 5 .
$$

Note that a lot of the above example was directed at showing the function to be μ_{2}-integrable. This can be weakened to \mathcal{L}^{2}-measurable. It is possible to extend Fubini's result, proving
Theorem 5.5 Let g be Lebesgue (i.e. \mathcal{L}^{2})-measurable on \mathbb{R}^{2} and assume that the iterated improper Riemann integrals

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) d x d y \quad \text { and } \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) d y d x
$$

exist and are finite. If one of the integrals

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|g(x, y)| d x d y \quad \text { and } \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|g(x, y)| d y d x \tag{6}
\end{equation*}
$$

is finite, then the integrals of (3) are equal.
Proof Not given.
Note how we can check either of the conditions in (6). Often one of there iterated integrals is easier to evaluate than the other.

