
4.4 Integration of measurable functions.
Let (X,F , µ) be a measure space. If f is F -measurable then we can write

f = f+ − f− where f+ = max(f, 0) and f− = −min(f, 0) are non-negative
F -measurable functions. So by definition both

∫
E

f+dµ and
∫

E
f−dµ exist

for all E ∈ F .

Definition If at least one of these integrals is finite, define the integral of f
on E relative to µ to be

∫

E

fdµ =

∫

E

f+dµ−
∫

E

f−dµ.

If
∫

E
fdµ is finite we say that f is µ-integrable on E. The set of all

functions integrable on E will be denoted by LE(µ).

Note With the notation above, if |f | = |f |+ − |f |− then |f |− ≡ 0 and
|f |+ = f+ + f−.

From the definition f is integrable if, and only if,
∫

E
f+dµ and

∫
E

f−dµ
are finite, that is, if |f | = f+ + f− is integrable. So if f ∈ LE(µ) then
|f | ∈ LE(µ). This is more restrictive than for Riemann integration.

Theorem 4.16 Let f, g ∈ L(µ) and A ∈ F . Then

*(i) f ∈ LA(µ),

*(ii) af ∈ L(µ) and
∫

X
afdµ = a

∫
X

fdµ for all a ∈ R,

(iii) f + g ∈ L(µ) and
∫

X
(f + g)dµ =

∫
X

fdµ +
∫

X
gdµ,

(iv) If f = 0 a.e.(µ) then
∫

X
fdµ = 0,

(v) If f ≤ g a.e.(µ) then
∫

X
fdµ ≤ ∫

X
gdµ,

(vi) If f = g a.e.(µ) then
∫

X
fdµ =

∫
X

gdµ.

Proof

*(i) f ∈ L(µ) implies that
∫

X
f+dµ and

∫
X

f−dµ are finite. But f+ and f−

are non-negative so we can apply Theorem 4.4(ii) to conclude that
∫

A
f±dµ ≤∫

X
f±dµ < ∞. Hence f ∈ LA(µ).

*(ii) Suppose that a ≥ 0. Then (af)± = af± and so

∫

X

(af)±dµ =

∫

X

af±dµ = a

∫

X

f±dµ by Theorem 4.4(i),

< ∞.

Since f ∈ L(µ) both of
∫

X
f±dµ are finite, hence both of

∫
X

(af)±dµ are
finite, that is, af ∈ L(µ). Further
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∫

X

afdµ =

∫

X

(af)+dµ−
∫

X

(af)−dµ

= a

(∫

X

f+dµ−
∫

X

f−dµ

)

= a

∫

X

fdµ. (1)

Suppose a = −1 then (−f)± = f∓ so −f is integrable and

∫

X

(−f)dµ =

∫

X

(−f)+dµ−
∫

X

(−f)−dµ

=

∫

X

f−dµ−
∫

X

f+dµ

= −
∫

X

fdµ. (2)

Suppose that a < 0 then af = −|a|f and so

∫

X

afdµ =

∫

X

−|a|fdµ = −
∫

X

|a|fdµ by (2)

= −|a|
∫

X

fdµ by (1)

= a

∫

X

fdµ.

(iii) Starting from the trivial observations that a ≤ max(a, 0) and 0 ≤
max(a, 0) it is easy to show that max(a + b, 0) ≤ max(a, 0) + max(b, 0) for
any reals a and b. Thus (f + g)± ≤ f± + g± and so

∫

X

(f + g)±dµ ≤
∫

X

(
f± + g±

)
dµ =

∫

X

f±dµ +

∫

X

g±dµ < ∞,

since f and g are µ-integrable. Hence f + g is µ-integrable. We now look at
f + g in two ways:

f + g = (f + g)+ − (f + g)−

f + g = (f+ − f−) + (g+ − g−).
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On equating and rearranging,

(f + g)+ + f− + g− = (f + g)− + f+ + g+.

Both side are sums of non-negative F -measurable functions so, by Theo-
rem 4.12, which says that integrals of sums of such functions equal the sums
of integrals, we get

∫

X

(f + g)+dµ +

∫

X

f−dµ +

∫

X

g−dµ

=

∫

X

(f + g)−dµ +

∫

X

f+dµ +

∫

X

g+dµ.

On rearrangement this gives the result.

(iv) The assumption f = 0 a.e.(µ) means that there exists a set D of measure
zero such that for all x ∈ X \D we have f(x) = 0. In particular f±(x) = 0
for such x and so f± = 0 a.e.(µ). Then, by Corollary 4.10 we see that∫

X
f±dµ = 0 and thus

∫
X

fdµ = 0.

(v) f ≤ g a.e.(µ) implies g−f ≥ 0 a.e.(µ) in which case (g−f)− = 0 a.e.(µ).
Write g = f + (g − f) when

∫

X

gdµ =

∫

X

fdµ +

∫

X

(g − f)+dµ−
∫

X

(g − f)−dµ by (iii)

=

∫

X

fdµ +

∫

X

(g − f)+dµ by (iv)

≥
∫

X

fdµ using (g − f)+ ≥ 0 and Theorem 4.4(ii)

(vi) f = g a.e.(µ) implies g − f = 0 a.e.(µ) and so
∫

X
(g − f)dµ = 0 by part

(iv). Hence
∫

X
gdµ =

∫
X

fdµ. ¥
Theorem 4.17 If g ∈ L(µ) then

∣∣∣∣
∫

X

gdµ

∣∣∣∣ ≤
∫

X

|g| dµ

with equality if, and only if, either g ≤ 0 a.e.(µ) or g ≥ 0 a.e.(µ).

Proof We have seen earlier that |g| ∈ L(µ). Also
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∣∣∣∣
∫

X

gdµ

∣∣∣∣ =

∣∣∣∣
∫

X

g+dµ−
∫

X

g−dµ

∣∣∣∣

≤
∫

X

g+dµ +

∫

X

g−dµ (triangle inequality)

=

∫

X

(
g+ + g−

)
dµ

(
since g+ and g− are non-negative

)

=

∫

X

|g| dµ.

We have equality in |a − b| ≤ a + b, a, b ≥ 0 if, and only if, either a = 0
or b = 0. In the present case this means either

∫

X

g+dµ = 0 or

∫

X

g−dµ = 0.

From Lemma 4.7 this means that either

µ{x : g+(x) > 0} = 0 or µ{x : g−(x) > 0} = 0,

that is, if either g ≤ 0 a.e.(µ) or g ≥ 0 a.e.(µ). ¥
Recall that for every measurable function, g, the integral is defined if,

and only if, both
∫

X
g±dµ are finite. A useful way to check this is given in

the following.

Corollary 4.18
If g is F -measurable and if there exists h ∈ L(µ) with |g| ≤ h a.e.(µ)

then g ∈ L(µ).

Proof Since g± ≤ |g| we have

∫

X

g±dµ ≤
∫

X

|g|dµ ≤
∫

X

hdµ < +∞.

Hence g ∈ L(µ). ¥
The next result extends Theorem 4.11 in that we replace the condition

that the sequence be non-negative and increasing by one that the sequence
be “dominated”. The result is equally as important as theorem 4.11.

Theorem 4.19 Lebesgue’s Dominated Convergence.

If {gn}n≥1 is a sequence of F -measurable functions such that limn→∞ gn =
g a.e.(µ) and if |gn| ≤ h for all n ≥ 1, where h ∈ L(µ) then

lim
n→∞

∫

X

gndµ =

∫

X

gdµ.
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Proof Corollary 4.18 implies that gn ∈ L(µ) for all n. But also |gn| ≤ h
implies that |g| ≤ h a.e.(µ) and so, again by Corollary 4.18, g ∈ L(µ).

Consider the sequence {h + gn}n≥1 of non-negative integrable functions.
Fatou’s Lemma implies

∫

X

(h + g)dµ ≤ lim inf
n→∞

∫

X

(h + gn)dµ

and so

∫

X

gdµ ≤ lim inf
n→∞

∫

X

gndµ.

Consider next the sequence {h− gn}n≥1 of non-negative integrable func-
tions. Fatou’s Lemma implies

∫

X

(h− g)dµ ≤ lim inf
n→∞

∫

X

(h− gn)dµ

and so

−
∫

X

gdµ ≤ lim inf
n→∞

∫

X

(−gn)dµ

or

∫

X

gdµ ≥ lim sup
n→∞

∫

X

gndµ.

Then

∫

X

gdµ ≤ lim inf
n→∞

∫

X

gndµ ≤ lim sup
n→∞

∫

X

gndµ ≤
∫

X

gdµ

and so we have equality throughout. In particular limn→∞
∫

X
gndµ exists and

equals
∫

X
gdµ. ¥

Example 19 Evaluate

lim
n→∞

∫ ∞

α

n2xe−n2x2

1 + x2
dx

when
(a) α > 0,
(b) α = 0.

Solution Let y = nx when the integral becomes
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∫ ∞

nα

ye−y2

1 + y2/n2
dy =

∫ ∞

0

χ[nα,∞)(y)
ye−y2

1 + y2/n2
dy

where χ[nα,∞)(y) = 1 if y ∈ [nα,∞), zero otherwise. For each n the integrand

is less than or equal to ye−y2
which is Lebesgue integrable over [0,∞). Hence

we can use Theorem 4.19 to interchange the limit and the integration. So

lim
n→∞

∫ ∞

α

n2xe−n2x2

1 + x2
dx =

∫ ∞

0

lim
n→∞

χ[nα,∞)(y)
ye−y2

1 + y2/n2
dy.

(a) If α > 0 then χ[nα,∞)(y) = 0 as soon as n > y/α. So the
(pointwise) limit of the integrand is zero and, thus, the integral is zero.

(b) If α = 0 then χ[nα,∞)(y) = 1 for all y and all n. So the limit of

the integrand is ye−y2
and thus the value of the integral is 1/2. ¥

Theorem 4.19 leads to important results on the interchanging of sums
and integrals in the manner of Corollary 4.13.

Theorem 4.20 Let {fn} be a sequence of integrable functions satisfying

∞∑
n=1

∫

X

|fn|dµ < ∞.

Then
∑∞

n=1 fn converges a.e.(µ), its sum is integrable and

∞∑
n=1

∫

X

fndµ =

∫

X

∞∑
n=1

fndµ.

Proof
We can apply Corollary 4.14 to the sequence of functions |fn|, obtaining

∫

X

∞∑
n=1

|fn|dµ =
∞∑

n=1

∫

X

|fn|dµ

< ∞ by assumption.

So, by Lemma 4.5, we find that
∑∞

n=1 |fn| < ∞ a.e.(µ). In particular
∑∞

n=1 fn

converges a.e.(µ). For those x at which it converges we have

∣∣∣∣∣
∞∑

n=1

fn(x)

∣∣∣∣∣ ≤
∞∑

n=1

|fn(x)| while
∞∑

n=1

|fn| ∈ L(µ).

Then by Corollary 4.18 we deduce that
∑∞

n=1 fn ∈ L(µ), i.e. it is integrable.
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Finally, in the notation of Theorem 4.19, we set gk :=
∑k

n=1 fn and
h :=

∑∞
n=1 |fn|, when Lebesgue’s Dominated convergence Theorem implies

∞∑
n=1

∫

X

fndµ = lim
k→∞

k∑
n=1

∫

X

fndµ

= lim
k→∞

∫

X

k∑
n=1

fndµ by Theorem 4.16(iii)

=

∫

X

lim
k→∞

k∑
n=1

fndµ by Theorem 4.19

=

∫

X

∞∑
n=1

fndµ.

¥
Example 20 Suppose f(x) is finite and integrable over (a, b) and let 0 <
r < 1 be a fixed number. Then

∫ b

a

f(x)
sin x

1− 2r cos x + r2
dx =

∞∑
n=1

rn−1

∫ b

a

f(x) sin nxdx.

Solution
Let z = r(cos x + i sin x) then

1− z

1− (z + z) + r2
=

1− z

1− (z + z) + zz
=

1− z

(1− z)(1− z)

=
1

1− z
=

∞∑
n=0

zn

=
∞∑

n=0

rn(cos nx + i sin nx).

Equating imaginary parts gives

sin x

1− 2r cos x + r2
=

∞∑
n=1

rn−1 sin nx.

(Don’t forget that sin 0 = 0.) So

∫ b

a

f(x)
sin x

1− 2r cos x + r2
dx =

∫ b

a

f(x)
∞∑

n=1

rn−1 sin nxdx.
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Yet f ∈ L[a,b](µ) and so |f | ∈ L[a,b](µ). Also |f(x)rn−1 sin nx| ≤ |f(x)|
and so by Corollary 4.18 we can deduce that f(x)rn−1 sin nx ∈ L[a,b](µ). Also

∞∑
n=1

∫ b

a

|f(x)rn−1 sin nx|dx ≤
∞∑

n=1

rn−1

∫ b

a

|f(x)|dx

=
r

r − 1

∫ b

a

|f(x)|dx

< ∞.

So, by Theorem 4.20, we can interchange the sum and integral as required.¥
(The following has not been covered in lectures in 2001/2001.)

Definition We say that
∑∞

n=1 fn converges boundedly a.e.(µ) on X if there
exists K > 0 such that

∣∣∣∣∣
N∑

n=1

fn(x)

∣∣∣∣∣ < K

for all x ∈ X and all N ≥ 1, and
∑∞

n=1 fn(x) exists for almost all x ∈ X.

The following result can be proved.

Theorem 4.21 Let g be an µ-integrable function and {fn}n≥1 a sequence
of µ-integrable functions for which their sum

∑∞
n=1 fn converge boundedly.

Then g
∑∞

n=1 fn is µ-integrable and

∞∑
n=1

∫

X

gfndµ =

∫

X

g

∞∑
n=1

fndµ.

Proof Set gN = g
∑N

n=1 fn. So by assumption |gN | ≤ K|g| a.e.(µ) for all
n and so the result follows from Theorem 4.19. ¥
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