4.4 Integration of measurable functions.

Let (X, \mathcal{F}, μ) be a measure space. If f is \mathcal{F}-measurable then we can write $f=f^{+}-f^{-}$where $f^{+}=\max (f, 0)$ and $f^{-}=-\min (f, 0)$ are non-negative \mathcal{F}-measurable functions. So by definition both $\int_{E} f^{+} d \mu$ and $\int_{E} f^{-} d \mu$ exist for all $E \in \mathcal{F}$.
Definition If at least one of these integrals is finite, define the integral of f on E relative to μ to be

$$
\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu .
$$

If $\int_{E} f d \mu$ is finite we say that f is μ-integrable on E. The set of all functions integrable on E will be denoted by $\mathcal{L}_{E}(\mu)$.
Note With the notation above, if $|f|=|f|^{+}-|f|^{-}$then $|f|^{-} \equiv 0$ and $|f|^{+}=f^{+}+f^{-}$.

From the definition f is integrable if, and only if, $\int_{E} f^{+} d \mu$ and $\int_{E} f^{-} d \mu$ are finite, that is, if $|f|=f^{+}+f^{-}$is integrable. So if $f \in \mathcal{L}_{E}(\mu)$ then $|f| \in \mathcal{L}_{E}(\mu)$. This is more restrictive than for Riemann integration.

Theorem 4.16 Let $f, g \in \mathcal{L}(\mu)$ and $A \in \mathcal{F}$. Then
*(i) $f \in \mathcal{L}_{A}(\mu)$,
*(ii) $a f \in \mathcal{L}(\mu)$ and $\int_{X} a f d \mu=a \int_{X} f d \mu$ for all $a \in \mathbb{R}$,
(iii) $f+g \in \mathcal{L}(\mu)$ and $\int_{X}(f+g) d \mu=\int_{X} f d \mu+\int_{X} g d \mu$,
(iv) If $f=0$ a.e. (μ) then $\int_{X} f d \mu=0$,
(v) If $f \leq g$ a.e. (μ) then $\int_{X} f d \mu \leq \int_{X} g d \mu$,
(vi) If $f=g$ a.e. (μ) then $\int_{X} f d \mu=\int_{X} g d \mu$.

Proof

*(i) $f \in \mathcal{L}(\mu)$ implies that $\int_{X} f^{+} d \mu$ and $\int_{X} f^{-} d \mu$ are finite. But f^{+}and f^{-} are non-negative so we can apply Theorem 4.4(ii) to conclude that $\int_{A} f^{ \pm} d \mu \leq$ $\int_{X} f^{ \pm} d \mu<\infty$. Hence $f \in \mathcal{L}_{A}(\mu)$.
*(ii) Suppose that $a \geq 0$. Then $(a f)^{ \pm}=a f^{ \pm}$and so

$$
\begin{aligned}
\int_{X}(a f)^{ \pm} d \mu & =\int_{X} a f^{ \pm} d \mu=a \int_{X} f^{ \pm} d \mu \quad \text { by Theorem 4.4(i) } \\
& <\infty
\end{aligned}
$$

Since $f \in \mathcal{L}(\mu)$ both of $\int_{X} f^{ \pm} d \mu$ are finite, hence both of $\int_{X}(a f)^{ \pm} d \mu$ are finite, that is, af $\in \mathcal{L}(\mu)$. Further

$$
\begin{align*}
\int_{X} a f d \mu & =\int_{X}(a f)^{+} d \mu-\int_{X}(a f)^{-} d \mu \\
& =a\left(\int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu\right) \\
& =a \int_{X} f d \mu . \tag{1}
\end{align*}
$$

Suppose $a=-1$ then $(-f)^{ \pm}=f^{\mp}$ so $-f$ is integrable and

$$
\begin{align*}
\int_{X}(-f) d \mu & =\int_{X}(-f)^{+} d \mu-\int_{X}(-f)^{-} d \mu \\
& =\int_{X} f^{-} d \mu-\int_{X} f^{+} d \mu \\
& =-\int_{X} f d \mu . \tag{2}
\end{align*}
$$

Suppose that $a<0$ then $a f=-|a| f$ and so

$$
\begin{align*}
\int_{X} a f d \mu & =\int_{X}-|a| f d \mu=-\int_{X}|a| f d \mu \text { by }(2) \tag{2}\\
& =-|a| \int_{X} f d \mu \text { by }(1) \\
& =a \int_{X} f d \mu
\end{align*}
$$

(iii) Starting from the trivial observations that $a \leq \max (a, 0)$ and $0 \leq$ $\max (a, 0)$ it is easy to show that $\max (a+b, 0) \leq \max (a, 0)+\max (b, 0)$ for any reals a and b. Thus $(f+g)^{ \pm} \leq f^{ \pm}+g^{ \pm}$and so

$$
\int_{X}(f+g)^{ \pm} d \mu \leq \int_{X}\left(f^{ \pm}+g^{ \pm}\right) d \mu=\int_{X} f^{ \pm} d \mu+\int_{X} g^{ \pm} d \mu<\infty
$$

since f and g are μ-integrable. Hence $f+g$ is μ-integrable. We now look at $f+g$ in two ways:

$$
\begin{aligned}
& f+g=(f+g)^{+}-(f+g)^{-} \\
& f+g=\left(f^{+}-f^{-}\right)+\left(g^{+}-g^{-}\right)
\end{aligned}
$$

On equating and rearranging,

$$
(f+g)^{+}+f^{-}+g^{-}=(f+g)^{-}+f^{+}+g^{+} .
$$

Both side are sums of non-negative \mathcal{F}-measurable functions so, by Theorem 4.12 , which says that integrals of sums of such functions equal the sums of integrals, we get

$$
\begin{aligned}
& \int_{X}(f+g)^{+} d \mu+\int_{X} f^{-} d \mu+\int_{X} g^{-} d \mu \\
= & \int_{X}(f+g)^{-} d \mu+\int_{X} f^{+} d \mu+\int_{X} g^{+} d \mu .
\end{aligned}
$$

On rearrangement this gives the result.
(iv) The assumption $f=0$ a.e. (μ) means that there exists a set D of measure zero such that for all $x \in X \backslash D$ we have $f(x)=0$. In particular $f^{ \pm}(x)=0$ for such x and so $f^{ \pm}=0$ a.e. (μ). Then, by Corollary 4.10 we see that $\int_{X} f^{ \pm} d \mu=0$ and thus $\int_{X} f d \mu=0$.
(v) $f \leq g$ a.e. (μ) implies $g-f \geq 0$ a.e. (μ) in which case $(g-f)^{-}=0$ a.e. (μ). Write $g=f+(g-f)$ when

$$
\begin{aligned}
\int_{X} g d \mu & =\int_{X} f d \mu+\int_{X}(g-f)^{+} d \mu-\int_{X}(g-f)^{-} d \mu \quad \text { by (iii) } \\
& =\int_{X} f d \mu+\int_{X}(g-f)^{+} d \mu \quad \text { by (iv) } \\
& \geq \int_{X} f d \mu \quad \text { using }(g-f)^{+} \geq 0 \text { and Theorem 4.4(ii) }
\end{aligned}
$$

(vi) $f=g$ a.e. (μ) implies $g-f=0$ a.e. (μ) and so $\int_{X}(g-f) d \mu=0$ by part (iv). Hence $\int_{X} g d \mu=\int_{X} f d \mu$.

Theorem 4.17 If $g \in \mathcal{L}(\mu)$ then

$$
\left|\int_{X} g d \mu\right| \leq \int_{X}|g| d \mu
$$

with equality if, and only if, either $g \leq 0$ a.e.(μ) or $g \geq 0$ a.e. (μ).
Proof We have seen earlier that $|g| \in \mathcal{L}(\mu)$. Also

$$
\begin{aligned}
\left|\int_{X} g d \mu\right| & =\left|\int_{X} g^{+} d \mu-\int_{X} g^{-} d \mu\right| \\
& \leq \int_{X} g^{+} d \mu+\int_{X} g^{-} d \mu \quad \text { (triangle inequality) } \\
& =\int_{X}\left(g^{+}+g^{-}\right) d \mu \quad \text { (since } g^{+} \text {and } g^{-} \text {are non-negative) } \\
& =\int_{X}|g| d \mu
\end{aligned}
$$

We have equality in $|a-b| \leq a+b, a, b \geq 0$ if, and only if, either $a=0$ or $b=0$. In the present case this means either

$$
\int_{X} g^{+} d \mu=0 \quad \text { or } \quad \int_{X} g^{-} d \mu=0
$$

From Lemma 4.7 this means that either

$$
\mu\left\{x: g^{+}(x)>0\right\}=0 \quad \text { or } \quad \mu\left\{x: g^{-}(x)>0\right\}=0
$$

that is, if either $g \leq 0$ a.e. (μ) or $g \geq 0$ a.e. (μ).
Recall that for every measurable function, g, the integral is defined if, and only if, both $\int_{X} g^{ \pm} d \mu$ are finite. A useful way to check this is given in the following.

Corollary 4.18

If g is \mathcal{F}-measurable and if there exists $h \in \mathcal{L}(\mu)$ with $|g| \leq h$ a.e. (μ) then $g \in \mathcal{L}(\mu)$.
Proof Since $g^{ \pm} \leq|g|$ we have

$$
\int_{X} g^{ \pm} d \mu \leq \int_{X}|g| d \mu \leq \int_{X} h d \mu<+\infty
$$

Hence $g \in \mathcal{L}(\mu)$.
The next result extends Theorem 4.11 in that we replace the condition that the sequence be non-negative and increasing by one that the sequence be "dominated". The result is equally as important as theorem 4.11.
Theorem 4.19 Lebesgue's Dominated Convergence.
If $\left\{g_{n}\right\}_{n \geq 1}$ is a sequence of \mathcal{F}-measurable functions such that $\lim _{n \rightarrow \infty} g_{n}=$ g a.e. (μ) and if $\left|g_{n}\right| \leq h$ for all $n \geq 1$, where $h \in \mathcal{L}(\mu)$ then

$$
\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\int_{X} g d \mu
$$

Proof Corollary 4.18 implies that $g_{n} \in \mathcal{L}(\mu)$ for all n. But also $\left|g_{n}\right| \leq h$ implies that $|g| \leq h$ a.e. (μ) and so, again by Corollary 4.18, $g \in \mathcal{L}(\mu)$.

Consider the sequence $\left\{h+g_{n}\right\}_{n \geq 1}$ of non-negative integrable functions. Fatou's Lemma implies

$$
\int_{X}(h+g) d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left(h+g_{n}\right) d \mu
$$

and so

$$
\int_{X} g d \mu \leq \liminf _{n \rightarrow \infty} \int_{X} g_{n} d \mu
$$

Consider next the sequence $\left\{h-g_{n}\right\}_{n \geq 1}$ of non-negative integrable functions. Fatou's Lemma implies

$$
\int_{X}(h-g) d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left(h-g_{n}\right) d \mu
$$

and so

$$
-\int_{X} g d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left(-g_{n}\right) d \mu
$$

or

$$
\int_{X} g d \mu \geq \limsup _{n \rightarrow \infty} \int_{X} g_{n} d \mu .
$$

Then

$$
\int_{X} g d \mu \leq \liminf _{n \rightarrow \infty} \int_{X} g_{n} d \mu \leq \limsup _{n \rightarrow \infty} \int_{X} g_{n} d \mu \leq \int_{X} g d \mu
$$

and so we have equality throughout. In particular $\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu$ exists and equals $\int_{X} g d \mu$.
Example 19 Evaluate

$$
\lim _{n \rightarrow \infty} \int_{\alpha}^{\infty} \frac{n^{2} x e^{-n^{2} x^{2}}}{1+x^{2}} d x
$$

when
(a) $\alpha>0$,
(b) $\alpha=0$.

Solution Let $y=n x$ when the integral becomes

$$
\int_{n \alpha}^{\infty} \frac{y e^{-y^{2}}}{1+y^{2} / n^{2}} d y=\int_{0}^{\infty} \chi_{[n \alpha, \infty)}(y) \frac{y e^{-y^{2}}}{1+y^{2} / n^{2}} d y
$$

where $\chi_{[n \alpha, \infty)}(y)=1$ if $y \in[n \alpha, \infty)$, zero otherwise. For each n the integrand is less than or equal to $y e^{-y^{2}}$ which is Lebesgue integrable over $[0, \infty)$. Hence we can use Theorem 4.19 to interchange the limit and the integration. So

$$
\lim _{n \rightarrow \infty} \int_{\alpha}^{\infty} \frac{n^{2} x e^{-n^{2} x^{2}}}{1+x^{2}} d x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} \chi_{[n \alpha, \infty)}(y) \frac{y e^{-y^{2}}}{1+y^{2} / n^{2}} d y
$$

(a) If $\alpha>0$ then $\chi_{[n \alpha, \infty)}(y)=0$ as soon as $n>y / \alpha$. So the (pointwise) limit of the integrand is zero and, thus, the integral is zero.
(b) If $\alpha=0$ then $\chi_{[n \alpha, \infty)}(y)=1$ for all y and all n. So the limit of the integrand is $y e^{-y^{2}}$ and thus the value of the integral is $1 / 2$.

Theorem 4.19 leads to important results on the interchanging of sums and integrals in the manner of Corollary 4.13.
Theorem 4.20 Let $\left\{f_{n}\right\}$ be a sequence of integrable functions satisfying

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

Then $\sum_{n=1}^{\infty} f_{n}$ converges a.e. (μ), its sum is integrable and

$$
\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu=\int_{X} \sum_{n=1}^{\infty} f_{n} d \mu .
$$

Proof
We can apply Corollary 4.14 to the sequence of functions $\left|f_{n}\right|$, obtaining

$$
\begin{aligned}
\int_{X} \sum_{n=1}^{\infty}\left|f_{n}\right| d \mu & =\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu \\
& <\infty \quad \text { by assumption. }
\end{aligned}
$$

So, by Lemma 4.5, we find that $\sum_{n=1}^{\infty}\left|f_{n}\right|<\infty$ a.e.(μ). In particular $\sum_{n=1}^{\infty} f_{n}$ converges a.e. (μ). For those x at which it converges we have

$$
\left|\sum_{n=1}^{\infty} f_{n}(x)\right| \leq \sum_{n=1}^{\infty}\left|f_{n}(x)\right| \quad \text { while } \quad \sum_{n=1}^{\infty}\left|f_{n}\right| \in \mathcal{L}(\mu)
$$

Then by Corollary 4.18 we deduce that $\sum_{n=1}^{\infty} f_{n} \in \mathcal{L}(\mu)$, i.e. it is integrable.

Finally, in the notation of Theorem 4.19, we set $g_{k}:=\sum_{n=1}^{k} f_{n}$ and $h:=\sum_{n=1}^{\infty}\left|f_{n}\right|$, when Lebesgue's Dominated convergence Theorem implies

$$
\begin{aligned}
\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu & =\lim _{k \rightarrow \infty} \sum_{n=1}^{k} \int_{X} f_{n} d \mu \\
& =\lim _{k \rightarrow \infty} \int_{X} \sum_{n=1}^{k} f_{n} d \mu \quad \text { by Theorem 4.16(iii) } \\
& =\int_{X} \lim _{k \rightarrow \infty} \sum_{n=1}^{k} f_{n} d \mu \quad \text { by Theorem 4.19 } \\
& =\int_{X} \sum_{n=1}^{\infty} f_{n} d \mu
\end{aligned}
$$

Example 20 Suppose $f(x)$ is finite and integrable over (a, b) and let $0<$ $r<1$ be a fixed number. Then

$$
\int_{a}^{b} f(x) \frac{\sin x}{1-2 r \cos x+r^{2}} d x=\sum_{n=1}^{\infty} r^{n-1} \int_{a}^{b} f(x) \sin n x d x
$$

Solution

Let $z=r(\cos x+i \sin x)$ then

$$
\begin{aligned}
\frac{1-\bar{z}}{1-(z+\bar{z})+r^{2}} & =\frac{1-\bar{z}}{1-(z+\bar{z})+z \bar{z}}=\frac{1-\bar{z}}{(1-z)(1-\bar{z})} \\
& =\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \\
& =\sum_{n=0}^{\infty} r^{n}(\cos n x+i \sin n x) .
\end{aligned}
$$

Equating imaginary parts gives

$$
\frac{\sin x}{1-2 r \cos x+r^{2}}=\sum_{n=1}^{\infty} r^{n-1} \sin n x .
$$

(Don't forget that $\sin 0=0$.) So

$$
\int_{a}^{b} f(x) \frac{\sin x}{1-2 r \cos x+r^{2}} d x=\int_{a}^{b} f(x) \sum_{n=1}^{\infty} r^{n-1} \sin n x d x
$$

Yet $f \in \mathcal{L}_{[a, b]}(\mu)$ and so $|f| \in \mathcal{L}_{[a, b]}(\mu)$. Also $\left|f(x) r^{n-1} \sin n x\right| \leq|f(x)|$ and so by Corollary 4.18 we can deduce that $f(x) r^{n-1} \sin n x \in \mathcal{L}_{[a, b]}(\mu)$. Also

$$
\begin{aligned}
\sum_{n=1}^{\infty} \int_{a}^{b}\left|f(x) r^{n-1} \sin n x\right| d x & \leq \sum_{n=1}^{\infty} r^{n-1} \int_{a}^{b}|f(x)| d x \\
& =\frac{r}{r-1} \int_{a}^{b}|f(x)| d x \\
& <\infty
\end{aligned}
$$

So, by Theorem 4.20, we can interchange the sum and integral as required.
(The following has not been covered in lectures in 2001/2001.)
Definition We say that $\sum_{n=1}^{\infty} f_{n}$ converges boundedly a.e. (μ) on X if there exists $K>0$ such that

$$
\left|\sum_{n=1}^{N} f_{n}(x)\right|<K
$$

for all $x \in X$ and all $N \geq 1$, and $\sum_{n=1}^{\infty} f_{n}(x)$ exists for almost all $x \in X$.
The following result can be proved.
Theorem 4.21 Let g be an μ-integrable function and $\left\{f_{n}\right\}_{n \geq 1}$ a sequence of μ-integrable functions for which their sum $\sum_{n=1}^{\infty} f_{n}$ converge boundedly. Then $g \sum_{n=1}^{\infty} f_{n}$ is μ-integrable and

$$
\sum_{n=1}^{\infty} \int_{X} g f_{n} d \mu=\int_{X} g \sum_{n=1}^{\infty} f_{n} d \mu
$$

Proof Set $g_{N}=g \sum_{n=1}^{N} f_{n}$. So by assumption $\left|g_{N}\right| \leq K|g|$ a.e. (μ) for all n and so the result follows from Theorem 4.19.

