4.4 Integration of measurable functions.

Let (X, F, ) be a measure space. If f is F-measurable then we can write
f=/f"—=f where ff =max(f,0) and f~ = —min(f,0) are non-negative
F-measurable functions. So by definition both [ » fTdp and il g J du exist
for all £ € F.

Definition If at least one of these integrals is finite, define the integral of f
on E relative to p to be

[E fu = /E [y - /E fdp

If fE fdu is finite we say that f is p-integrable on E. The set of all
functions integrable on E will be denoted by Lg(p).

Note With the notation above, if |f| = |f|” — |f|” then |f|” = 0 and
T =fr+f

From the definition f is integrable if, and only if, [ o fTdp and / S du
are finite, that is, if |f| = f* + f~ is integrable. So if f € Lpg(u) then
|f| € Lg(p). This is more restrictive than for Riemann integration.

Theorem 4.16 Let f,g € L(n) and A € F. Then
*(i) f € La(p),
*(ii) af € L(p) and [y afdp=a [, fdu for all a € R,
(iii) f+g € L(p) and [ (f +g9)du = [y fdu+ [y gdp,
(iv) If f=0 a.e.(u) then [, fdu =0,
(V) If f<g ae(p) then [ fdu < [y gdu,
(vi) If f=g a.e(u) then [ fdu= [y gdp.

*(i) f € L£(u) implies that [, f*du and [, f~du are finite. But f* and f~
are non-negative so we can apply Theorem 4.4(ii) to conclude that | i du <
fX fEdu < oo. Hence f € La(p).

*(ii) Suppose that a > 0. Then (af)* = af* and so

/(af)idﬂ = /afiduza/ fEdu by Theorem 4.4(i),
X X X

< 0o0.

Since f € L(p) both of [, f=du are finite, hence both of [, (af)*du are
finite, that is, af € L£(p). Further



/Xafdu = /X(af)+du—/x(af)‘du
(e o)

— a/de,u. (1)

Suppose a = —1 then (—f)* = fT so —f is integrable and

Jenan = [ pran [ nan

X
= “dy — +d
Jdp /Xf v

X

- /X Fd. )

Suppose that a < 0 then af = —|a|f and so

/Xafdu = /X—|a!fdu=—/xla\fdu by (2)
— —lal [ fdu by (1)
X

= a/de,u.

(iii) Starting from the trivial observations that ¢ < max(a,0) and 0 <
max(a,0) it is easy to show that max(a + b,0) < max(a,0) + max(b,0) for
any reals a and b. Thus (f + g)* < f* + ¢* and so

JGrarans [ (Fray = [ fans [ <.

since f and g are u-integrable. Hence f + ¢ is p-integrable. We now look at
f + g in two ways:

f+9 = (f+9"—(f+9)
f+g = (ff=f)+@ —9).
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On equating and rearranging,

f+9 "+ +g =(f+9 +f+g".

Both side are sums of non-negative F-measurable functions so, by Theo-
rem 4.12; which says that integrals of sums of such functions equal the sums
of integrals, we get

/X(f+g)+du+/xfdu+/xgdu
— [t [ frans [ g

On rearrangement this gives the result.

(iv) The assumption f = 0 a.e.(u) means that there exists a set D of measure
zero such that for all z € X \ D we have f(z) = 0. In particular f*(z) =0
for such x and so f* = 0 a.e.(u). Then, by Corollary 4.10 we see that

[ fEdp =0 and thus [, fdp = 0.
(v) f < gae.(u)implies g— f > 0 a.e.(u) in which case (g— f)~ = 0 a.e.(u).
Write g = f + (9 — f) when

/ngu = /dewr/x(g—fﬁdu—/x(g—f)du by (iii)
= fdu+/)((g—f)+du by (iv)

> fdu using (g — f)" > 0 and Theorem 4.4(ii)

(vi) f =g a.e.(u) implies g — f = 0 a.e.(u) and so [, (¢ — f)dp = 0 by part
(iv). Hence [, gdu = [y fdp. |

Theorem 4.17 If g € L(u) then

/gdu‘ S/ 9] dp
X X

with equality if, and only if, either g < 0 a.e.(u) or g >0 a.e.(p).

Proof We have seen earlier that |g| € L£(p). Also



/gdu‘ = /g+du— g‘du‘
X X X

< / gtdu+ | g du  (triangle inequality)
X X

= / (g+ + g_) du (since ¢g" and g~ are non—negative)
X

We have equality in |a —b| < a + b, a,b > 0 if, and only if, either a = 0
or b= 0. In the present case this means either

/ gtdu=0 or / g du = 0.
X X

From Lemma 4.7 this means that either

e gt (x)>0=0 or pf{x:g (z)>0}=0,
that is, if either g < 0 a.e.(u) or g > 0 a.e.(u). |

Recall that for every measurable function, g, the integral is defined if,
and only if, both [ X gTdy are finite. A useful way to check this is given in
the following.

Corollary 4.18
If g is F-measurable and if there exists h € L(u) with |g| < h a.e.(u)
then g € L(p).

Proof Since g* < |g| we have

/QidlLS/ |9|dM§/hdu<+oo.
X X X

Hence g € L(p). |

The next result extends Theorem 4.11 in that we replace the condition
that the sequence be non-negative and increasing by one that the sequence
be “dominated”. The result is equally as important as theorem 4.11.

Theorem 4.19 Lebesgue’s Dominated Convergence.

If {gn}n>1 is a sequence of F-measurable functions such that lim,, ., g, =
g a.e.(p) and if |gn| < h for all n > 1, where h € L(p) then

lim gnd,u:/ gdjs.
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Proof Corollary 4.18 implies that g, € L(u) for all n. But also |g,| < h
implies that |g| < h a.e.(u) and so, again by Corollary 4.18, g € L(p).

Consider the sequence {h + ¢, },>1 of non-negative integrable functions.
Fatou’s Lemma implies

/ (h+ g)dp <liminf [ (h+ g,)du
X

n—oo X

and so

/gd,ugliminf/ gndps.
X neee Jx

Consider next the sequence {h — g, },>1 of non-negative integrable func-
tions. Fatou’s Lemma implies

/ (h —g)du < lim inf/ (h— gn)dp
X X

and so
—/ gdugliminf/(—gn)du
X e Jx
or
/gd,u > 1imsup/ gndpt.
b's n—oo Jx
Then

/gd,u < liminf/ gndp < limsup/ gndp < / gdu
X nmee JXx n—oo  JX X

and so we have equality throughout. In particular lim,, . [ « 9ndp exists and
equals [, gdpu. [ |
Example 19 Evaluate

) % p2gpe—n’e?
lim ——dx
n—oo [ 1422
when
(a) a >0,

(b) a =0.

Solution Let y = nx when the integral becomes



© eV p > ye v’ p
.. = ], om0 s

where X, 00)(¥) = 1if y € [na, 00), zero otherwise. For each n the integrand

is less than or equal to ye‘yz which is Lebesgue integrable over [0, 00). Hence
we can use Theorem 4.19 to interchange the limit and the integration. So

. * p2pe—ne? < ye ¥
o [ T ) e 0 et

(a) If @ > 0 then Xj,,.)(y) = 0 as soon as n > y/a. So the
(pointwise) limit of the integrand is zero and, thus, the integral is zero.
(b) If a = 0 then X[,q,0)(y) = 1 for all y and all n. So the limit of

the integrand is ye™*" and thus the value of the integral is 1 /2. |

Theorem 4.19 leads to important results on the interchanging of sums
and integrals in the manner of Corollary 4.13.

Theorem 4.20 Let {f,} be a sequence of integrable functions satisfying

Z/ | fuldp < oo.
n=1 X

Then Y > | fn converges a.e.(p1), its sum is integrable and

i /X Fuddp = /X nf:lfndu-

Proof
We can apply Corollary 4.14 to the sequence of functions |f,|, obtaining

/anjlmwu - nil/x'f”'d“

< 00 by assumption.

So, by Lemma 4.5, we find that >, | f,| < oo a.e.(u). In particular >, f,
converges a.e.(u). For those x at which it converges we have

> falw)

Then by Corollary 4.18 we deduce that ">, f, € L(u), i.e. it is integrable.

<Y @) while > |ful € L(w).
n=1 n=1



Finally, in the notation of Theorem 4.19, we set g, := Zﬁzl fn and
h =" |fal, when Lebesgue’s Dominated convergence Theorem implies

00 k

k
= lim / > fadp by Theorem 4.16(iii)
Xn:l

k—o0

k
= lim nd by Theorem 4.19
/X Lim ; fadp by

S

Example 20 Suppose f(z) is finite and integrable over (a,b) and let 0 <
r < 1 be a fixed number. Then

b sin T N .
) f<x>1—2rcosx+r2dx:;T i f(z) sinnzdz.

Solution
Let z = r(cosz + isinx) then

1-% B 1-% . 1-z
1—(z+2)+r2  1—-(2+2)+2z2 (1-2)(1-2)
1 —
- 1—2222

oo
= Z r"(cosnz + isinnz).

n=0

Equating imaginary parts gives

sin x >
5 = E r"Lsinnz.
1—2rcosz+r -

n=

(Don’t forget that sin0 = 0.) So

/bf(x) sin 2 do = /bf(x) ir”_l sin nxdx.
a a n=1

1 —2rcosx +1r?
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Yet f € Ligy(p) and so |f| € Ligy(p). Also |f(z)r"'sinnz| < [f(x)]
and so by Corollary 4.18 we can deduce that f(z)r" 'sinnz € Ly (p). Also

) b o0 b
Z |f(z)r" T sinnz|dr < Zr”lf |f(z)|dz
n=1 a

n=1va
- e

T
< o0

So, by Theorem 4.20, we can interchange the sum and integral as required.ll
(The following has not been covered in lectures in 2001,/2001.)

Definition We say that Y, f,, converges boundedly a.e.(u) on X if there
exists i > 0 such that

<K

> falw)

forall z € X and all N > 1, and > 7| fn(z) exists for almost all z € X.

The following result can be proved.

Theorem 4.21 Let g be an p-integrable function and {f,},>1 a sequence
of p-integrable functions for which their sum )~ f, converge boundedly.
Then g > 7 | fn is p-integrable and

g;/ngndM:/ng;fndﬂ'

Proof Set gy = gzgzl fn- So by assumption |gy| < Klg| a.e.(u) for all
n and so the result follows from Theorem 4.19. |



