
4.3 Interchanging Integrals with other opera-
tions.

We now have one of the major results of this course where we interchange
an integral with the operation of a limit.

Theorem 4.11 Lebesgue’s Monotone Convergence Theorem

Let E ∈ F and let 0 ≤ f1 ≤ ... ≤ fn ≤ fn+1 ≤ ... be an increasing
sequence of non-negative F -measurable functions. defined on E. Then

lim
n→∞

∫

E

fndµ =

∫

E

lim
n→∞

fndµ.

Proof
Since for each x ∈ E, {fn(x)}n is an increasing sequence the limit, possibly

∞, exists. For x ∈ E define f(x) = limn→∞ fn(x).
From Theorem 3.6(iv) we see that f is F -measurable on E and so

∫
E

fdµ
though it might well be +∞. Also f ≥ fn for all n and so

∫

E

fdµ ≥
∫

E

fndµ

by Theorem 4.4(ii). But
{∫

E
fndµ

}
n≥1

is also an increasing sequence and so
its limit exists and satisfies

∫

E

fdµ ≥ lim
n→∞

∫

E

fndµ. (16)

(*Of course the limit might well be +∞, when necessarily
∫

E
fdµ = +∞

and we have equality in (16). Thus we could henceforward assume that
the limit is finite though this will not actually be necessary in the following
argument.)

For the inequality in the other direction we need a “trick”. Take any
non-negative simple F -measurable function 0 ≤ s ≤ f and let 0 ≤ c < 1 be
given.

Let En = {x ∈ E : fn(x) > cs(x)} ∈ F when E1 ⊆ E2 ⊆ ... . If x ∈ E
then f(x) ≥ s(x) > cs(x). Because of the strict inequality we can find m ≥ 1
such that fm(x) > cs(x) which means that x ∈ Em. Thus E ⊆ ⋃

n≥1 En. Yet
En ⊆ E for all n and so

⋃
n≥1 En = E. Then
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∫

E

fndµ ≥
∫

En

fndµ

>

∫

En

csdµ

= cIEn(s)

and so limn→∞
∫

E
fndµ ≥ cIE(s) by Theorem 4.2(iv). True for all c < 1

means that limn→∞
∫

E
fndµ ≥ IE(s). Thus limn→∞

∫
E

fndµ is an upper
bound for I(f, E) for which

∫
E

fdµ is the least of all upper bounds. Hence

lim
n→∞

∫

E

fndµ ≥
∫

E

fdµ. (17)

Combining (16) and (17) gives our result. ¥
*We can see here why the “trick” of introducing c in the proof is necessary.

Consider the case f ≡ 1 on E and fn ≡ 1− 1
n

on E. Then limn→∞ fn = f
on E. We now take any simple function 0 ≤ s ≤ f . It is allowable to take
s ≡ 1. Then without c we have En = {x ∈ E : s(x) ≤ f(x)} = φ for all
n ≥ 1 and so

⋃∞
n=1 En = φ. But we would like

⋃∞
n=1 En = E. We see that

the problem is allowing s = f on a subset of E of non-zero measure, which
in turn is possible if, and only if, f is constant on a set of non-zero measure.

*Note (i) Given a non-negative F -measurable function f then, by Theorem
3.8 there exists a sequence of non-negative simple F -measurable functions
sn increasing to f . Then Theorem 4.11 implies

∫
E

fdµ = limn→∞ IE(sn). It
can be shown that this limit is independent of the sequence of non-negative
simple F -measurable functions. This is often taken as a definition of

∫
E

fdµ.

*(ii) In Riemann integration we approximate f by splitting the domain
and obtaining lower and upper step functions. In Lebesgue integration it is
the range that is split obtaining simple functions. This has the big advantage
that the domain need not be R, i.e. we can define integration on general
measure spaces.

Example 16 Enumerate the rationals in [0, 1] as r1, r2, r3, ... . Let

gn(x) =

{
1 if x = ri for some 1 ≤ i ≤ n
0 otherwise.

The gn satisfy Theorem 4.11 but further, they are Riemann integrable
with R-

∫ 1

0
gndx = 0 for all n ≥ 1. Yet

lim
n→∞

gn(x) =

{
1 if x ∈ Q ∩ [0, 1]
0 otherwise.
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which is not Riemann integrable. So restricting only to Riemann integration
requires extra conditions to ensure that limn→∞ gn is Riemann integrable
(such as uniform convergence).

(*The virtue of Lebesgue integration is that the limit of a sequence of
converging, Lebesgue-measurable functions is measurable (Theorem 3.6(iv))
and thus it can be integrated, though the resulting value might be ∞).

Theorem 4.12 Let f, g : X → R+ be F-measurable functions and E ∈ F .
Then

∫

E

(f + g)dµ =

∫

E

fdµ +

∫

E

gdµ.

Proof
By Theorem 3.10 find sequences {sn}n≥1 and {tn}n≥1 of non-negative

simple F -measurable functions converging to f and g respectively. Then
{sn + tn}n≥1 is a sequence of non-negative simple F -measurable functions
converging to f + g and so

∫

E

(f + g)dµ =

∫

E

lim
n→∞

(sn + tn)dµ

= lim
n→∞

∫

E

(sn + tn)dµ by Theorem 4.11

lim
n→∞

IE(sn + tn) by Proposition 4.3

= lim
n→∞

(IE(sn) + IE(tn)) by Theorem 4.2(ii)

= lim
n→∞

IE(sn) + lim
n→∞

IE(tn)

= lim
n→∞

∫

E

sndµ + lim
n→∞

∫

E

tndµ by Proposition 4.3

=

∫

E

lim
n→∞

sndµ +

∫

E

lim
n→∞

tndµ by Theorem 4.11

=

∫

E

fdµ +

∫

E

gdµ.

¥
Our next result concerns interchanging integration with the operation of

infinite summation.

Corollary 4.13 Let {fn}n≥1 be a sequence of non-negative F-measurable
functions defined on E ∈ F . Then

∫

E

∞∑
n=1

fndµ =
∞∑

n=1

∫

E

fndµ.
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Proof Let Hk =
∑k

n=1 fn. Then, by induction based on Theorem 4.12,

∫

E

Hkdµ =
k∑

n=1

∫

E

fndµ. (18)

for all k ≥ 1. Since fn ≥ 0 for all n we see that Hk is an increasing sequence
converging to

∑∞
n=1 fn. So

∫

E

∞∑
n=1

fndµ =

∫

E

lim
k→∞

Hkdµ

= lim
k→∞

∫

E

Hkdµ by Theorem 4.11

= lim
k→∞

k∑
n=1

∫

E

fndµ by (18)

=
∞∑

n=1

∫

E

fndµ.

¥
*Note Corollary 4.13 does not require the integral on the left to be finite
or the sum on the right to converge, though if the sum is divergent then,
because all terms are non-negative, we can say it converges to +∞ by our
extended definition of convergence. Then the result says that if either side
is infinite then so are both sides.

In the following examples we will use, without proof, the fact that a
function which is Riemann integrable over a finite interval is also Lebesgue
integrable over the interval with the same limit. (See Appendix 8a.)

Example 17 Show that

∫ 1

0

x1/3

1− x
log(1/x)dx = 9

∞∑
n=0

1

(3n + 1)2
.

Solution The integrand is a continuous function on (0, 1) and so measurable
and Lebesgue integrable when we can look upon the integral as a Lebesgue
integral. We might think that the integrand is problematic at x = 0 and x = 1
but we need only remember that we can change the values of a function on
a set of measure without changing the value of the integral. So consider this
problem as one of integrating the function

{
x1/3 (1− x)−1 log(1/x) for 0 < x < 1,
0 for x = 0 and x = 1.
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Write

x1/3

1− x
log(1/x) = x1/3 log(1/x)

∞∑
n=0

xn,

valid for 0 < x < 1. Apply the Corollary to get

∫ 1

0

x1/3

1− x
log(1/x)dx =

∞∑
n=0

∫ 1

0

xn+1/3 log(1/x)dx

= 9
∞∑

n=0

1

(3n + 1)2

on integrating by parts. ¥
Example 18 Let 0 < p, q < ∞, then

∫ 1

0

xp−1

1 + xq
dx =

(
1

p
− 1

p + q

)
+

(
1

p + 2q
− 1

p + 3q

)
+ ... .

Note The sum on the right hand side is not absolutely convergent. For such
a conditionally convergent series it is very important in what order the terms
are added; it is an interesting result that given a conditionally convergent
series and a real number α we can find an order in which to add the terms
of the series so that it converges to α. Hence the inclusion of the brackets in
this result.

Solution If we expand

xp−1(1 + xq)−1 = xp−1(1− xq + x2q − x3q + x4q − ...)

the terms are, unfortunately, not all non-negative. So it is necessary to group
terms, writing this as

∑∞
n=0 fn(x) where

fn(x) = xp−1(x2nq − x(2n+1)q) ≥ 0 on [0, 1] .

The fn are continuous and so Lebesgue integrable. Corollary 4.13 gives

∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

∫ 1

0

xp−1(x2nq − x(2n+1)q)dx

=
∞∑

n=0

[
xp+2nq

p + 2nq
− xp+(2n+1)q

p + (2n + 1)q

]1

0

=
∞∑

n=0

(
1

p + 2nq
− 1

p + (2n + 1)q

)
.
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¥
Special cases:

The choice p = 1, q = 1 gives

(
1− 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+ ... =

∫ 1

0

1

1 + x
dx = log 2,

while p = 1 and q = 2 gives

(
1− 1

3

)
+

(
1

5
− 1

7

)
+

(
1

9
− 1

11

)
+ ... =

∫ 1

0

1

1 + x2
dx =

π

4
.

*Theorem 4.14 Let (X,F , µ) be a measure space and f a non-negative F -
measurable function. Then φ(E) =

∫
E

fdµ is a measure on the measurable
space (X,F).

Further, if also
∫

X
fdµ < ∞ then for all ε > 0 there exists δ > 0 such

that if A ∈ F and µ(A) < δ then φ(A) < ε.

(This is a continuity property).

*Proof (Not needed)
Let {En} be a collection of disjoint sets from F . Let

fn(x) =

{
f(x) if x ∈ En

0 if x /∈ En,

so f(x) =
∑∞

n=1 fn(x) for all x ∈ ⋃∞
n=1 En. For each n ≥ 1 the function fn is

F -measurable. Then

φ

( ∞⋃
n=1

En

)
=

∫
S∞

n=1 En

fdµ =

∫
S∞

n=1 En

∞∑
m=1

fmdµ

=
∞∑

m=1

∫
S∞

n=1 En

fmdµ by Corollary 4.13

=
∞∑

m=1

∫

Em

fmdµ

=
∞∑

m=1

∫

Em

fdµ since fm = f on Em

=
∞∑

m=1

φ(Em).
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Hence φ is σ-additive.
Let

Fn(x) =

{
f(x) if f(x) ≤ n
0 if f(x) > n

which are F -measurable functions. The Fn are monotonically increasing to
f . From Theorem 4.11 we see that

lim
n→∞

∫

X

Fndµ =

∫

X

fdµ.

This means that given any ε > 0 there exists N such that

0 ≤
∫

X

fdµ−
∫

X

FNdµ <
ε

2
.

Choose δ = ε/2N . Then if A ∈ F satisfies µ(A) < δ we have

φ(A) =

∫

A

fdµ =

∫

A

(f − FN)dµ +

∫

A

FNdµ

≤
∫

X

(f − FN)dµ +

∫

A

Ndµ, since FN ≤ N,

<
ε

2
+ Nµ(A)

< ε.

¥
*Example If µ is the Lebesgue measure on R then e−x2/2 is continuous and,
therefore, Lebesgue measurable. So Theorem 4.14 implies

∫
A

e−x2/2dµ is a
measure on R.

*Definition

µG(A) =
1√
2π

∫

A

e−x2/2dµ

is the Gaussian measure on R. Note that µG(R) = 1.

We can extend Theorem 4.11 to sequences that need not be increasing.
The next result is important.

Theorem 4.15 Fatou’s Lemma. If {gn}n≥1 is a sequence of non-negative
F -measurable functions and E ∈ F then

∫

E

lim inf
n→∞

gndµ ≤ lim inf
n→∞

∫

E

gndµ.
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Proof
The function lim inf

n→∞
gn is F -measurable by Theorem 3.6(ii).

Recall lim inf
n→∞

gn = limn→∞(infr≥n gr). Let hn = infr≥n gr which we have

seen previously is an increasing sequence of functions. So we can apply
Lebesgue’s |Monotone Convergence Theorem, Theorem 4.11, to deduce

lim
n→∞

∫

E

hndµ =

∫

E

lim
n→∞

hndµ

=

∫

E

lim inf
n→∞

gndµ.

Also hn = infr≥n gr ≤ gn and so
∫

E
hndµ ≤ ∫

E
gndµ. Therefore

lim
n→∞

∫

E

hndµ = lim inf
n→∞

∫

E

hndµ

≤ lim inf
n→∞

∫

E

gndµ.

Combining we get the required result. ¥
This result can be extended slightly by replacing lim inf

n→∞
gn = g a.e.(µ)

and deducing
∫

E
gdµ ≤ lim inf

n→∞
∫

E
gndµ.
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