4 Integration

4.1 Integration of non-negative simple functions

Throughout we are in a measure space \((X, \mathcal{F}, \mu)\).

Definition Let \(s\) be a non-negative \(\mathcal{F}\)-measurable simple function so that

\[s = \sum_{i=1}^{N} a_i \chi_{A_i}, \]

with disjoint \(\mathcal{F}\)-measurable sets \(A_i, \bigcup_{i=1}^{N} A_i = X\) and \(a_i \geq 0\). For any \(E \in \mathcal{F}\) define the integral of \(f\) over \(E\) to be

\[I_E(s) = \sum_{i=1}^{N} a_i \mu(A_i \cap E), \]

with the convention that if \(a_i = 0\) and \(\mu(A_i \cap E) = +\infty\) then \(0 \times (+\infty) = 0\). (So the area under \(s \equiv 0\) on \(\mathbb{R}\) is zero.)

Example 13 Consider \(([0, 1], \mathcal{L}, \mu)\). Define

\[f(x) = \begin{cases} 1 & \text{if } x \text{ rational} \\ 0 & \text{if } x \text{ irrational}. \end{cases} \]

This is a simple function with \(A_1 = \mathbb{Q} \cap [0, 1] \in \mathcal{L}\) and \(A_0\) the set of irrationals in \([0, 1]\) which, as the complement of \(A_1\), is in \(\mathcal{L}\). Thus \(f\) is measurable and

\[I_{[0,1]}(f) = 1 \mu(\mathbb{Q} \cap [0, 1]) + 0 \mu(\mathbb{Q}^c \cap [0, 1]) = 0, \]

since the Lebesgue measure of a countable set is zero.

Lemma 4.1

If \(E_1 \subseteq E_2 \subseteq E_3...\) are in \(\mathcal{F}\) and \(E = \bigcup_{n=1}^{\infty} E_n\) then

\[\lim_{n \to \infty} \mu(E_n) = \mu(E). \]

(We say that we have an increasing sequence of sets.)

Proof

If there exists an \(n\) such that \(\mu(E_n) = +\infty\) then \(E_n \subseteq E\) implies \(\mu(E) = +\infty\) and the result follows.

So assume that \(\mu(E_n) < +\infty\) for all \(n \geq 1\). Then
\[E = E_1 \cup \bigcup_{n=2}^{\infty} (E_n \setminus E_{n-1}) \]

is a disjoint union. Note that \(E_{n-1} \subseteq E_n \) implies \(E_n = (E_n \setminus E_{n-1}) \cup E_{n-1} \), a disjoint union. So \(\mu(E_n) = \mu(E_n \setminus E_{n-1}) + \mu(E_{n-1}) \). Because the measures are finite we can rearrange as \(\mu(E_n \setminus E_{n-1}) = \mu(E_n) - \mu(E_{n-1}) \). So

\[
\mu(E) = \mu(E_1) + \sum_{n=2}^{\infty} \mu(E_n \setminus E_{n-1})
\]

\[
= \mu(E_1) + \lim_{N \to \infty} \sum_{n=1}^{N} (\mu(E_n) - \mu(E_{n-1}))
\]

(by definition of infinite sum)

\[
= \lim_{N \to \infty} \mu(E_N).
\]

Theorem 4.2

Let \(s \) and \(t \) be two simple non-negative \(\mathcal{F} \)-measurable functions on \((X, \mathcal{F}, \mu)\) and \(E, F \in \mathcal{F} \). Then

(i) \(I_E(cs) = cI_E(s) \) for all \(c \in \mathbb{R} \),

(ii) \(I_E(s + t) = I_E(s) + I_E(t) \),

(iii) If \(s \leq t \) on \(E \) then \(I_E(s) \leq I_E(t) \),

(iv) If \(F \subseteq E \) then \(I_F(s) \leq I_E(s) \),

(v) If \(E_1 \subseteq E_2 \subseteq E_3 \subseteq \ldots \) and \(E = \bigcup_{k=1}^{\infty} E_k \) then \(\lim_{k \to \infty} I_{E_k}(s) = I_E(s) \).

Proof (Proofs of all parts will be omitted from lectures and left to students. the idea is to write out the simple functions for both \(s \) and \(t \) in terms of common sets \(C_{ij} \) as in the proof of Lemma 3.7.)

As in Lemma 3.7 write

\[s = \sum_{i=1}^{M} a_i \chi_{A_i} = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i \chi_{C_{ij}} \]

and

\[t = \sum_{j=1}^{N} b_j \chi_{B_j} = \sum_{i=1}^{M} \sum_{j=1}^{N} b_j \chi_{C_{ij}} \]
with $C_{ij} = A_i \cap B_j \in {\mathcal F}$.

*(i) Note that $cs = \sum_{i=1}^{M} ca_i \chi_{A_i}$ and so

$$I_E(cs) = \sum_{i=1}^{M} ca_i \mu(A_i)$$

$$= c \sum_{i=1}^{M} a_i \mu(A_i) = cI_E(s).$$

*(ii) Then $s + t = \sum_{i=1}^{M} \sum_{j=1}^{N} (a_i + b_j) \chi_{C_{ij}}$. So

$$I_E(s + t) = \sum_{i=1}^{M} \sum_{j=1}^{N} (a_i + b_j) \mu(C_{ij} \cap E)$$

$$= \sum_{i=1}^{M} \sum_{j=1}^{N} a_i \mu(C_{ij} \cap E) + \sum_{i=1}^{M} \sum_{j=1}^{N} b_j \mu(C_{ij} \cap E)$$

$$= \sum_{i=1}^{M} \mu\left(\bigcup_{j=1}^{N}(C_{ij} \cap E)\right) + \sum_{j=1}^{N} \mu\left(\bigcup_{i=1}^{M}(C_{ij} \cap E)\right)$$

$$= \sum_{i=1}^{M} a_i \mu(A_i \cap E) + \sum_{j=1}^{N} b_j \mu(B_j \cap E)$$

$$= I_E(s) + I_E(t).$$

*(iii) Given any $1 \leq i \leq M, 1 \leq j \leq N$ for which $C_{ij} \cap E \neq \phi$ we have for any $x \in C_{ij} \cap E$ that $a_i = s(x) \leq t(x) = b_j$ so

$$I_E(s) = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i \mu(C_{ij} \cap E)$$

$$\leq \sum_{i=1}^{M} \sum_{j=1}^{N} b_j \mu(C_{ij} \cap E)$$

$$= I_E(t).$$

*(iv) By monotonicity of μ we have
\[I_F(s) = \sum_{i=1}^{M} a_i \mu(A_i \cap F) \leq \sum_{i=1}^{M} a_i \mu(A_i \cap E) = I_E(s). \]

*(v) From Lemma 4.1 we know that if we have \(E_1 \subseteq E_2 \subseteq E_3 \subseteq \ldots \) and \(E = \bigcup_{k=1}^{\infty} E_k \) then \(\lim_{k \to \infty} \mu(E_k) = \mu(E) \). Thus

\[
\lim_{k \to \infty} I_{E_k}(s) = \lim_{k \to \infty} \sum_{i=1}^{M} a_i \mu(A_i \cap E_k) = \sum_{i=1}^{M} a_i \lim_{k \to \infty} \mu(A_i \cap E_k) = \sum_{i=1}^{M} a_i \mu(A_i \cap E) \text{ by Lemma 4.1,}
\]

\[= I_E(s). \]

4.2 Integration of non-negative measurable functions.

Definition If \(f : X \to \mathbb{R}^+ \) is a non-negative \(\mathcal{F} \)-measurable function, \(E \in \mathcal{F} \), then the integral of \(f \) over \(E \) is

\[\int_{E} f \, d\mu = \sup \{ I_E(s) : s \text{ a simple } \mathcal{F}\text{-measurable function, } 0 \leq s \leq f \}. \]

Of course, if \(E \neq X \) we need only that \(f \) is defined on some domain containing \(E \).

Let \(\mathcal{I}(f, E) \) denote the set

\[\{ I_E(s) : s \text{ a simple } \mathcal{F}\text{-measurable function, } 0 \leq s \leq f \} \]

so the integral equals \(\sup \mathcal{I}(f, E) \).

Note The integral exists for all non-negative \(\mathcal{F} \)-measurable functions though it might be infinite.
If $\int_E f \, d\mu = \infty$ we say the integral is \textit{defined}.

If $\int_E f \, d\mu < \infty$ we say that f is μ--\textit{integrable} or \textit{summable} on E.

Proposition 4.3

For a non-negative, \mathcal{F}-measurable simple function, t, we have $\int_E t \, d\mu = I_E(t)$.

Proof

Given any simple \mathcal{F}-measurable function, $0 \leq s \leq t$ we have $I_E(s) \leq I_E(t)$ by Theorem 4.2(iii). So $I_E(t)$ is an upper bound for $\mathcal{I}(t, E)$ for which $\int_E t \, d\mu$ is the least of all upper bounds. Hence $\int_E t \, d\mu \leq I_E(t)$.

Also, $\int_E t \, d\mu \geq I_E(s)$ for all simple \mathcal{F}-measurable function, $0 \leq s \leq t$, and so is greater than $I_E(s)$ for any particular s, namely $s = t$. Hence $\int_E t \, d\mu \geq I_E(t)$.

Thus $\int_E t \, d\mu = I_E(t)$. \blacksquare

Example 14 If $f \equiv k$, a constant, then $\int_E f \, d\mu = I_E(f) = k \mu(E)$.

Theorem 4.4 Throughout, all sets are in \mathcal{F} and all functions are non-negative and \mathcal{F}-measurable.

(i) For all $c \geq 0$,

$$\int_E c f \, d\mu = c \int_E f \, d\mu, \quad (15)$$

(ii) If $0 \leq g \leq h$ on E then

$$\int_E g \, d\mu \leq \int_E h \, d\mu,$$

(iii) If $E_1 \subseteq E_2$ and $f \geq 0$ then

$$\int_{E_1} f \, d\mu \leq \int_{E_2} f \, d\mu.$$

Proof

(i) If $c = 0$ then the right hand side of (15) is 0 as is the left hand side by Example 14.

Assume $c > 0$.

If $0 \leq s \leq cf$ is a simple \mathcal{F}-measurable function then so is $0 \leq \frac{1}{c}s \leq f$. Thus

$$\int_E f \, d\mu \geq I_E\left(\frac{1}{c}s\right) = \frac{1}{c} I_E(s)$$

by Theorem 4.2(i). Hence $c \int_E f \, d\mu$ is an upper bound for $\mathcal{I}(cf, E)$ for which $\int_E cf \, d\mu$ is the least upper bound. Thus $c \int_E f \, d\mu \geq \int_E cf \, d\mu$.

5
Starting with the observation that if $0 \leq s \leq f$ is a simple \mathcal{F}-measurable function then so is $0 \leq cs \leq cf$ we obtain

$$\int_E (cf) \, d\mu \geq I_E (cs) \quad \text{by the definition of } \int_E$$

$$= cI_E (s) \quad \text{by Theorem 4.2(i)}. $$

Hence $\frac{1}{c} \int_E (cf) \, d\mu$ is an upper bound for $\mathcal{I}(f, E)$ for which $\int_E f \, d\mu$ is the least upper bound. Hence $\frac{1}{c} \int_E (cf) \, d\mu \geq \int_E f \, d\mu$, that is, $\int_E cf \, d\mu \geq c \int_E f \, d\mu$.

Combining both inequalities gives our result.

(ii) Let $0 \leq s \leq g$ be a simple, \mathcal{F}-measurable function. Then since $g \leq h$ we trivially have $0 \leq s \leq h$ in which case $I_E(s) \leq \int_E hd\mu$ by the definition of integral \int_E. Thus $\int_E hd\mu$ is an upper bound for $\mathcal{I}(g, E)$. As in (i) we get $\int_E hd\mu \geq \int_E gd\mu$.

(iii) Let $0 \leq s \leq f$ be a simple, \mathcal{F}-measurable function. Then

$$I_{E_1}(s) \leq I_{E_2}(s) \quad \text{by Theorem 4.2(iii)}$$

$$\leq \int_{E_2} f \, d\mu \quad \text{by the definition of } \int_{E_2}. $$

So $\int_{E_2} f \, d\mu$ is an upper bound for $\mathcal{I}(f, E_1)$ and so is greater than the least of all upper bounds. Hence $\int_{E_2} f \, d\mu \geq \int_{E_1} f \, d\mu$. \hfill \blacksquare

Lemma 4.5

Assume $E \in \mathcal{F}$, $f \geq 0$ is \mathcal{F}-measurable and $\int_E f \, d\mu < \infty$. Set

$$A = \{x \in E : f(x) = +\infty\}.$$

Then $A \in \mathcal{F}$ and $\mu(A) = 0$.

Proof

Since f is \mathcal{F}-measurable then $f^{-1}(\{\infty\}) \in \mathcal{F}$ and so $A = E \cap f^{-1}(\{\infty\}) \in \mathcal{F}$. Define

$$s_n(x) = \begin{cases} n & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Since $A \in \mathcal{F}$ we deduce that s_n is an \mathcal{F}-measurable simple function. Also $s_n \leq f$ and so

$$n\mu(A) = I_E(s_n) \quad \text{by definition of } I_E$$

$$\leq \int_E f \, d\mu \quad \text{by definition of } \int_E$$

$$< \infty \quad \text{by assumption}.$$
True for all $n \geq 1$ means that $\mu(A) = 0$.

Lemma 4.6

If f is \mathcal{F}-measurable and non-negative on $E \in \mathcal{F}$ and $\mu(E) = 0$ then $\int_E f d\mu = 0$.

Proof

Let $0 \leq s \leq f$ be a simple, \mathcal{F}-measurable function. So $s = \sum_{n=1}^{N} a_n \chi_{A_n}$ for some $a_n \geq 0, A_n \in \mathcal{F}$. Then $I_E(s) = \sum_{n=1}^{N} a_n \mu(A_n \cap E)$. But μ is monotone which means that $\mu(A_n \cap E) \leq \mu(E) = 0$ for all n and so $I_E(s) = 0$ for all such simple functions. Hence $I(\{f, E\}) = \{0\}$ and so $\int_E f d\mu = \sup I(f, E) = 0$.

Lemma 4.7

If $g \geq 0$ and $\int_E g d\mu = 0$ then

$$\mu\{x \in E : g(x) > 0\} = 0.$$

Proof Let $A = \{x \in E : g(x) > 0\}$ and $A_n = \{x \in E : g(x) > \frac{1}{n}\}$. Then the sets $A_n = E \cap \{x : g(x) > \frac{1}{n}\} \in \mathcal{F}$ satisfy $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$ with $A = \bigcup_{n=1}^{\infty} A_n$. By lemma 4.1 $\mu(A) = \lim_{n \to \infty} \mu(A_n)$. Using

$$s_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in A_n \\ 0 & \text{otherwise}, \end{cases}$$

so $s_n \leq g$ on A_n we have

$$\frac{1}{n} \mu(A_n) = I_{A_n}(s_n) \leq \int_{A_n} g d\mu \quad \text{by the definition of } \int_{A_n}$$

$$\leq \int_{E} g d\mu \quad \text{Thereom 4.4(iii)}$$

$$= 0 \quad \text{by assumption.}$$

So $\mu(A_n) = 0$ for all n and hence $\mu(A) = 0$.

Definition

If a property P holds on all points in $E \setminus A$ for some set A with $\mu(A) = 0$ we say that P holds almost everywhere (μ) on E, written as $a.e. (\mu)$ on E.

(*It might be that P holds on some of the points of A or that the set of points on which P does not hold is non-measurable. This is immaterial. But if μ is a complete measure, such as the Lebesgue-Steltje's measure μ_F, then the situation is simpler. Assume that a property P holds $a.e. (\mu)$ on E. The definition says that the set of points, D say, on which P does not hold can be covered by a set of measure zero, i.e. there exists $A : D \subseteq A$ and $\mu(A) = 0$. Yet if μ is complete then D will be measurable of measure zero.

In this section we are not assuming that μ is complete.)
So, for example, Lemma 4.7 can be restated as

Lemma 4.8

If \(g \geq 0 \) and \(\int_E gd\mu = 0 \) then \(g = 0 \) a.e.(\(\mu \)) on \(E \).

We can extend Theorem 4.4(ii) as follows.

Theorem 4.9 If \(g, h : X \to \mathbb{R}^+ \) are \(\mathcal{F} \)-measurable functions and \(g \leq h \) a.e.(\(\mu \)) then

\[
\int_E gd\mu \leq \int_E hd\mu.
\]

Proof

By assumption there exists a set \(D \subseteq E \), of measure zero, such that for all \(x \in E \setminus D \) we have \(g(x) \leq h(x) \). Let \(0 \leq s \leq g \) be a simple, \(\mathcal{F} \)-measurable function, written as

\[
s = \sum_{i=1}^{N} a_i \chi_{A_i}, \quad \text{with } \bigcup_{i=1}^{N} A_i = E.
\]

The problem here is that we may well not have \(s \leq h \). Define

\[
s^*(x) = \begin{cases}
 s(x) & \text{if } x \notin D \\
 0 & \text{if } x \in D
\end{cases}
\]

\[
= \sum_{i=1}^{N} a_i \chi_{A_i \cap D^c}
\]

which is still a simple, \(\mathcal{F} \)-measurable function. Then for \(x \in E \setminus D \) we have \(s^*(x) = s(x) \leq g(x) \leq h(x) \), while for \(x \in D \) we have \(s^*(x) = 0 \leq h(x) \). Thus \(s^*(x) \leq h(x) \) for all \(x \in E \).

Note that \(A_i = (A_i \cap D^c) \cup (A_i \cap D) \), a disjoint union in which case \(\mu(A_i) = \mu(A_i \cap D^c) + \mu(A_i \cap D) = \mu(A_i) \). But \(A_i \cap D \subseteq D \) and so \(\mu(A_i \cap D) \leq \mu(D) = 0 \). Thus \(\mu(A_i) = \mu(A_i \cap D^c) \). Hence

\[
I_E(s^*) = \sum_{i=1}^{N} a_i \mu(A_i \cap D^c)
\]

\[
= \sum_{i=1}^{N} a_i \mu(A_i)
\]

\[
= I_E(s).
\]
So $I_E(s) = I_E(s^*) \leq \int_E h \, d\mu$ by the definition of integral \int_E. Thus $\int_E h \, d\mu$ is an upper bound for $\mathcal{I}(g, E)$ while $\int_E g \, d\mu$ is the least of all upper bounds for $\mathcal{I}(g, E)$. Hence $\int_E h \, d\mu \geq \int_E g \, d\mu$. ■

Corollary 4.10

If $g, h : X \to \mathbb{R}^+$ are \mathcal{F}-measurable with $g = h$ a.e. (μ) on E then

$$\int_E g \, d\mu = \int_E h \, d\mu.$$

Proof

By assumption there exists a set $D \subseteq E$ of measure zero such that for all $x \in E \setminus D$ we have $g(x) = h(x)$. In particular, for these x we have $g(x) \leq h(x)$ and $h(x) \leq g(x)$. So $g \leq h$ a.e. (μ) on E and $h \leq g$ a.e. (μ) on E. Hence the result follows from two applications of Theorem 4.9. ■

So, a function may have its values altered on a set of measure zero without altering the value of its integral. In particular, by Lemma 4.5 we may assume that a non-negative integrable function is finite valued.

Example 15 (c.f. Example 13) On $([0, 1], \mathcal{L}, \mu)$ the function

$$f(x) = \begin{cases}
 1 & \text{if } x \text{ is rational} \\
 0 & \text{if } x \text{ irrational}
\end{cases}$$

is 0 a.e. (μ) on $[0, 1]$. So

$$\int_{[0,1]} f \, d\mu = \int_{[0,1]} 0 \, d\mu = 0.$$