4 Integration

4.1 Integration of non-negative simple functions

Throughout we are in a measure space (X, \mathcal{F}, μ).
Definition Let s be a non-negative \mathcal{F}-measurable simple function so that

$$
s=\sum_{i=1}^{N} a_{i} \chi_{A_{i}},
$$

with disjoint \mathcal{F}-measurable sets $A_{i}, \bigcup_{i=1}^{N} A_{i}=X$ and $a_{i} \geq 0$. For any $E \in \mathcal{F}$ define the integral of f over E to be

$$
I_{E}(s)=\sum_{i=1}^{N} a_{i} \mu\left(A_{i} \cap E\right)
$$

with the convention that if $a_{i}=0$ and $\mu\left(A_{i} \cap E\right)=+\infty$ then $0 \times(+\infty)=0$. (So the area under $s \equiv 0$ on \mathbb{R} is zero.)
Example 13 Consider ($[0,1], \mathcal{L}, \mu)$. Define

$$
f(x)= \begin{cases}1 & \text { if } x \text { rational } \\ 0 & \text { if } x \text { irrational. }\end{cases}
$$

This is a simple function with $A_{1}=\mathbb{Q} \cap[0,1] \in \mathcal{L}$ and A_{0} the set of irrationals in $[0,1]$ which, as the complement of A_{1}, is in \mathcal{L}. Thus f is measurable and

$$
\begin{aligned}
I_{[0,1]}(f) & =1 \mu(\mathbb{Q} \cap[0,1])+0 \mu\left(\mathbb{Q}^{c} \cap[0,1]\right) \\
& =0,
\end{aligned}
$$

since the Lebesgue measure of a countable set is zero.

Lemma 4.1

If $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ are in \mathcal{F} and $E=\bigcup_{n=1}^{\infty} E_{n}$ then

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu(E)
$$

(We say that we have an increasing sequence of sets.)

Proof

If there exists an n such that $\mu\left(E_{n}\right)=+\infty$ then $E_{n} \subseteq E$ implies $\mu(E)=$ $+\infty$ and the result follows.

So assume that $\mu\left(E_{n}\right)<+\infty$ for all $n \geq 1$. Then

$$
E=E_{1} \cup \bigcup_{n=2}^{\infty}\left(E_{n} \backslash E_{n-1}\right)
$$

is a disjoint union. Note that $E_{n-1} \subseteq E_{n}$ implies $E_{n}=\left(E_{n} \backslash E_{n-1}\right) \cup E_{n-1}$, a disjoint union. So $\mu\left(E_{n}\right)=\mu\left(E_{n} \backslash E_{n-1}\right)+\mu\left(E_{n-1}\right)$. Because the measures are finite we can rearrange as $\mu\left(E_{n} \backslash E_{n-1}\right)=\mu\left(E_{n}\right)-\mu\left(E_{n-1}\right)$. So

$$
\begin{aligned}
\mu(E) & =\mu\left(E_{1}\right)+\sum_{n=2}^{\infty} \mu\left(E_{n} \backslash E_{n-1}\right) \\
& =\mu\left(E_{1}\right)+\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\mu\left(E_{n}\right)-\mu\left(E_{n-1}\right)\right)
\end{aligned}
$$

(by definition of infinite sum)
$=\lim _{N \rightarrow \infty} \mu\left(E_{N}\right)$.

Theorem 4.2

Let s and t be two simple non-negative \mathcal{F}-measurable functions on (X, \mathcal{F}, μ) and $E, F \in \mathcal{F}$. Then
(i) $I_{E}(c s)=c I_{E}(s)$ for all $c \in \mathbb{R}$,
(ii) $I_{E}(s+t)=I_{E}(s)+I_{E}(t)$,
(iii) If $s \leq t$ on E then $I_{E}(s) \leq I_{E}(t)$,
(iv) If $F \subseteq E$ then $I_{F}(s) \leq I_{E}(s)$,
(v) If $E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \ldots$ and $E=\bigcup_{k=1}^{\infty} E_{k}$ then $\lim _{k \rightarrow \infty} I_{E_{k}}(s)=I_{E}(s)$.

Proof (Proofs of all parts will be omitted from lectures and left to students. the idea is to write out the simple functions for both s and t in terms of common sets $C_{i j}$ as in the proof of Lemma 3.7.)

As in Lemma 3.7 write

$$
s=\sum_{i=1}^{M} a_{i} \chi_{A_{i}}=\sum_{i=1}^{M} \sum_{j=1}^{N} a_{i} \chi_{C_{i j}}
$$

and

$$
t=\sum_{j=1}^{N} b_{j} \chi_{B_{j}}=\sum_{i=1}^{M} \sum_{j=1}^{N} b_{j} \chi_{C_{i j}}
$$

with $C_{i j}=A_{i} \cap B_{j} \in \mathcal{F}$.
*(i) Note that $c s=\sum_{i=1}^{M} c a_{i} \chi_{A_{i}}$ and so

$$
\begin{aligned}
I_{E}(c s) & =\sum_{i=1}^{M} c a_{i} \mu\left(A_{i}\right) \\
& =c \sum_{i=1}^{M} a_{i} \mu\left(A_{i}\right)=c I_{E}(s) .
\end{aligned}
$$

*(ii) Then $s+t=\sum_{i=1}^{M} \sum_{j=1}^{N}\left(a_{i}+b_{j}\right) \chi_{C_{i j}}$. So

$$
\begin{aligned}
I_{E}(s+t) & =\sum_{i=1}^{M} \sum_{j=1}^{N}\left(a_{i}+b_{j}\right) \mu\left(C_{i j} \cap E\right) \\
& =\sum_{i=1}^{M} \sum_{j=1}^{N} a_{i} \mu\left(C_{i j} \cap E\right)+\sum_{i=1}^{M} \sum_{j=1}^{N} b_{j} \mu\left(C_{i j} \cap E\right) \\
& =\sum_{i=1}^{M} a_{i} \mu\left(\bigcup_{j=1}^{N}\left(C_{i j} \cap E\right)\right)+\sum_{j=1}^{N} b_{j} \mu\left(\bigcup_{i=1}^{M}\left(C_{i j} \cap E\right)\right) \\
& =\sum_{i=1}^{M} a_{i} \mu\left(A_{i} \cap E\right)+\sum_{j=1}^{N} b_{j} \mu\left(B_{j} \cap E\right) \\
& =I_{E}(s)+I_{E}(t) .
\end{aligned}
$$

*(iii) Given any $1 \leq i \leq M, 1 \leq j \leq N$ for which $C_{i j} \cap E \neq \phi$ we have for any $x \in C_{i j} \cap E$ that $a_{i}=s(x) \leq t(x)=b_{j}$ so

$$
\begin{aligned}
I_{E}(s) & =\sum_{i=1}^{M} \sum_{j=1}^{N} a_{i} \mu\left(C_{i j} \cap E\right) \\
& \leq \sum_{i=1}^{M} \sum_{j=1}^{N} b_{j} \mu\left(C_{i j} \cap E\right) \\
& =I_{E}(t)
\end{aligned}
$$

*(iv) By monotonicity of μ we have

$$
\begin{aligned}
I_{F}(s) & =\sum_{i=1}^{M} a_{i} \mu\left(A_{i} \cap F\right) \\
& \leq \sum_{i=1}^{M} a_{i} \mu\left(A_{i} \cap E\right) \\
& =I_{E}(s)
\end{aligned}
$$

*(v) From Lemma 4.1 we know that if we have $E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \ldots$ and $E=\bigcup_{k=1}^{\infty} E_{k}$ then $\lim _{k \rightarrow \infty} \mu\left(E_{k}\right)=\mu(E)$. Thus

$$
\begin{aligned}
\lim _{k \rightarrow \infty} I_{E_{k}}(s) & =\lim _{k \rightarrow \infty} \sum_{i=1}^{M} a_{i} \mu\left(A_{i} \cap E_{k}\right) \\
& =\sum_{i=1}^{M} a_{i} \lim _{k \rightarrow \infty} \mu\left(A_{i} \cap E_{k}\right) \\
& =\sum_{i=1}^{M} a_{i} \mu\left(A_{i} \cap E\right) \quad \text { by Lemma 4.1, } \\
& =I_{E}(s) .
\end{aligned}
$$

4.2 Integration of non-negative measurable functions.

Definition If $f: X \rightarrow \mathbb{R}^{+}$is a non-negative \mathcal{F}-measurable function, $E \in \mathcal{F}$, then the integral of f over E is

$$
\int_{E} f d \mu=\sup \left\{I_{E}(s): s \text { a simple } \mathcal{F} \text {-measurable function, } 0 \leq s \leq f\right\}
$$

Of course, if $E \neq X$ we need only that f is defined on some domain containing E.

Let $\mathcal{I}(f, E)$ denote the set

$$
\left\{I_{E}(s): s \text { a simple } \mathcal{F} \text {-measurable function, } 0 \leq s \leq f\right\}
$$

so the integral equals $\sup \mathcal{I}(f, E)$.
Note The integral exists for all non-negative \mathcal{F}-measurable functions though it might be infinite.

If $\int_{E} f d \mu=\infty$ we say the integral is defined.
If $\int_{E} f d \mu<\infty$ we say that f is μ-integrable or summable on E.

Proposition 4.3

For a non-negative, \mathcal{F}-measurable simple function, t, we have $\int_{E} t d \mu=$ $I_{E}(t)$.
Proof
Given any simple \mathcal{F}-measurable function, $0 \leq s \leq t$ we have $I_{E}(s) \leq I_{E}(t)$ by Theorem $4.2\left(\right.$ iii). So $I_{E}(t)$ is an upper bound for $\mathcal{I}(t, E)$ for which $\int_{E} t d \mu$ is the least of all upper bounds. Hence $\int_{E} t d \mu \leq I_{E}(t)$.

Also, $\int_{E} t d \mu \geq I_{E}(s)$ for all simple \mathcal{F}-measurable function, $0 \leq s \leq t$, and so is greater than $I_{E}(s)$ for any particular s, namely $s=t$. Hence $\int_{E} t d \mu \geq I_{E}(t)$.

Thus $\int_{E} t d \mu=I_{E}(t)$.
Example 14 If $f \equiv k$, a constant, then $\int_{E} f d \mu=I_{E}(f)=k \mu(E)$.
Theorem 4.4 Throughout, all sets are in \mathcal{F} and all functions are nonnegative and \mathcal{F}-measurable.
(i) For all $c \geq 0$,

$$
\begin{equation*}
\int_{E} c f d \mu=c \int_{E} f d \mu, \tag{15}
\end{equation*}
$$

(ii) If $0 \leq g \leq h$ on E then

$$
\int_{E} g d \mu \leq \int_{E} h d \mu
$$

(iii) If $E_{1} \subseteq E_{2}$ and $f \geq 0$ then

$$
\int_{E_{1}} f d \mu \leq \int_{E_{2}} f d \mu
$$

Proof

(i) If $c=0$ then the right hand side of (15) is 0 as is the left hand side by Example 14.

Assume $c>0$.
If $0 \leq s \leq c f$ is a simple \mathcal{F}-measurable function then so is $0 \leq \frac{1}{c} s \leq f$. Thus

$$
\int_{E} f d \mu \geq I_{E}\left(\frac{1}{c} s\right)=\frac{1}{c} I_{E}(s)
$$

by Theorem 4.2(i). Hence $c \int_{E} f d \mu$ is an upper bound for $\mathcal{I}(c f, E)$ for which $\int_{E} c f d \mu$ is the least upper bound. Thus $c \int_{E} f d \mu \geq \int_{E} c f d \mu$.

Starting with the observation that if $0 \leq s \leq f$ is a simple \mathcal{F}-measurable function then so is $0 \leq c s \leq c f$ we obtain

$$
\begin{array}{rlr}
\int_{E}(c f) d \mu & \geq I_{E}(c s) \quad \text { by the definition of } \int_{E} \\
& =c I_{E}(s) \quad \text { by Theorem 4.2(i). }
\end{array}
$$

Hence $\frac{1}{c} \int_{E}(c f) d \mu$ is an upper bound for $\mathcal{I}(f, E)$ for which $\int_{E} f d \mu$ is the least upper bound. Hence $\frac{1}{c} \int_{E}(c f) d \mu \geq \int_{E} f d \mu$, that is, $\int_{E} c f d \mu \geq c \int_{E} f d \mu$.

Combining both inequalities gives our result.
(ii) Let $0 \leq s \leq g$ be a simple, \mathcal{F}-measurable function. Then since $g \leq h$ we trivially have $0 \leq s \leq h$ in which case $I_{E}(s) \leq \int_{E} h d \mu$ by the definition of integral \int_{E}. Thus $\int_{E} h d \mu$ is an upper bound for $\mathcal{I}(g, E)$. As in (i) we get $\int_{E} h d \mu \geq \int_{E} g d \mu$.
(iii) Let $0 \leq s \leq f$ be a simple, \mathcal{F}-measurable function. Then

$$
\begin{array}{rlr}
I_{E_{1}}(s) & \leq I_{E_{2}}(s) \quad \text { by Theorem } 4.2(\mathrm{iii}) \\
& \leq \int_{E_{2}} f d \mu \quad \text { by the definition of } \int_{E_{2}} .
\end{array}
$$

So $\int_{E_{2}} f d \mu$ is an upper bound for $\mathcal{I}\left(f, E_{1}\right)$ and so is greater than the least of all upper bounds. Hence $\int_{E_{2}} f d \mu \geq \int_{E_{1}} f d \mu$.

Lemma 4.5

Assume $E \in \mathcal{F}, f \geq 0$ is \mathcal{F}-measurable and $\int_{E} f d \mu<\infty$. Set

$$
A=\{x \in E: f(x)=+\infty\} .
$$

Then $A \in \mathcal{F}$ and $\mu(A)=0$.
Proof
Since f is \mathcal{F}-measurable then $f^{-1}(\{\infty\}) \in \mathcal{F}$ and so $A=E \cap f^{-1}(\{\infty\}) \in$ \mathcal{F}. Define

$$
s_{n}(x)= \begin{cases}n & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

Since $A \in \mathcal{F}$ we deduce that s_{n} is an \mathcal{F}-measurable simple function. Also $s_{n} \leq f$ and so

$$
\begin{aligned}
n \mu(A) & =I_{E}\left(s_{n}\right) & & \text { by definition of } I_{E} \\
& \leq \int_{E} f d \mu & & \text { by definition of } \int_{E} \\
& <\infty & & \text { by assumption. }
\end{aligned}
$$

True for all $n \geq 1$ means that $\mu(A)=0$.

Lemma 4.6

If f is \mathcal{F}-measurable and non-negative on $E \in \mathcal{F}$ and $\mu(E)=0$ then $\int_{E} f d \mu=0$.
Proof
Let $0 \leq s \leq f$ be a simple, \mathcal{F}-measurable function. So $s=\sum_{n=1}^{N} a_{n} \chi_{A_{n}}$ for some $a_{n} \geq 0, A_{n} \in \mathcal{F}$. Then $I_{E}(s)=\sum_{n=1}^{N} a_{n} \mu\left(A_{n} \cap E\right)$. But μ is monotone which means that $\mu\left(A_{n} \cap E\right) \leq \mu(E)=0$ for all n and so $I_{E}(s)=$ 0 for all such simple functions. Hence $\mathcal{I}(f, E)=\{0\}$ and so $\int_{E} f d \mu=$ $\sup \mathcal{I}(f, E)=0$.
Lemma 4.7 If $g \geq 0$ and $\int_{E} g d \mu=0$ then

$$
\mu\{x \in E: g(x)>0\}=0
$$

Proof Let $A=\{x \in E: g(x)>0\}$ and $A_{n}=\left\{x \in E: g(x)>\frac{1}{n}\right\}$. Then the sets $A_{n}=E \cap\left\{x: g(x)>\frac{1}{n}\right\} \in \mathcal{F}$ satisfy $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$ with $A=\bigcup_{n=1}^{\infty} A_{n}$. By lemma $4.1 \mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$. Using

$$
s_{n}(x)=\left\{\begin{array}{cc}
\frac{1}{n} & \text { if } x \in A_{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

so $s_{n} \leq g$ on A_{n} we have

$$
\begin{aligned}
\frac{1}{n} \mu\left(A_{n}\right) & =I_{A_{n}}\left(s_{n}\right) & & \\
& \leq \int_{A_{n}} g d \mu & & \text { by the definition of } \int_{A_{n}} \\
& \leq \int_{E} g d \mu & & \text { Thereom 4.4(iii) } \\
& =0 & & \text { by assumption. }
\end{aligned}
$$

So $\mu\left(A_{n}\right)=0$ for all n and hence $\mu(A)=0$.
Definition If a property P holds on all points in $E \backslash A$ for some set A with $\mu(A)=0$ we say that P holds almost everywhere (μ) on E, written as a.e. (μ) on E.
(*It might be that P holds on some of the points of A or that the set of points on which P does not hold is non-measurable. This is immaterial. But if μ is a complete measure, such as the Lebesgue-Steiltje's measure μ_{F}, then the situation is simpler. Assume that a property P holds a.e. (μ) on E. The definition says that the set of points, D say, on which P does not hold can be covered by a set of measure zero, i.e. there exists $A: D \subseteq A$ and $\mu(A)=0$. Yet if μ is complete then D will be measurable of measure zero.

In this section we are not assuming that μ is complete.)

So, for example, Lemma 4.7 can be restated as

Lemma 4.8

If $g \geq 0$ and $\int_{E} g d \mu=0$ then $g=0$ a.e. (μ) on E.
We can extend Theorem 4.4(ii) as follows.
Theorem 4.9 If $g, h: X \rightarrow \mathbb{R}^{+}$are \mathcal{F}-measurable functions and $g \leq h$ a.e.(μ) then

$$
\int_{E} g d \mu \leq \int_{E} h d \mu .
$$

Proof

By assumption there exists a set $D \subseteq E$, of measure zero, such that for all $x \in E \backslash D$ we have $g(x) \leq h(x)$. Let $0 \leq s \leq g$ be a simple, \mathcal{F}-measurable function, written as

$$
s=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}, \quad \text { with } \bigcup_{i=1}^{N} A_{i}=E
$$

The problem here is that we may well not have $s \leq h$. Define

$$
\begin{aligned}
s^{*}(x) & = \begin{cases}s(x) & \text { if } x \notin D \\
0 & \text { if } x \in D\end{cases} \\
& =\sum_{i=1}^{N} a_{i} \chi_{A_{i} \cap D^{c}}
\end{aligned}
$$

which is still a simple, \mathcal{F}-measurable function. Then for $x \in E \backslash D$ we have $s^{*}(x)=s(x) \leq g(x) \leq h(x)$, while for $x \in D$ we have $s^{*}(x)=0 \leq h(x)$. Thus $s^{*}(x) \leq h(x)$ for all $x \in E$.

Note that $A_{i}=\left(A_{i} \cap D^{c}\right) \cup\left(A_{i} \cap D\right)$, a disjoint union in which case $\mu\left(A_{i}\right)=\mu\left(A_{i} \cap D^{c}\right)+\mu\left(A_{i} \cap D\right)=\mu\left(A_{i}\right)$. But $A_{i} \cap D \subseteq D$ and so $\mu\left(A_{i} \cap D\right) \leq$ $\mu(D)=0$. Thus $\mu\left(A_{i}\right)=\mu\left(A_{i} \cap D^{c}\right)$. Hence

$$
\begin{aligned}
I_{E}\left(s^{*}\right) & =\sum_{i=1}^{N} a_{i} \mu\left(A_{i} \cap D^{c}\right) \\
& =\sum_{i=1}^{N} a_{i} \mu\left(A_{i}\right) \\
& =I_{E}(s) .
\end{aligned}
$$

So $I_{E}(s)=I_{E}\left(s^{*}\right) \leq \int_{E} h d \mu$ by the definition of integral \int_{E}. Thus $\int_{E} h d \mu$ is an upper bound for $\mathcal{I}(g, E)$ while $\int_{E} g d \mu$ is the least of all upper bounds for $\mathcal{I}(g, E)$. Hence $\int_{E} h d \mu \geq \int_{E} g d \mu$.

Corollary 4.10

If $g, h: X \rightarrow \mathbb{R}^{+}$are \mathcal{F}-measurable with $g=h$ a.e (μ) on E then

$$
\int_{E} g d \mu=\int_{E} h d \mu .
$$

Proof

By assumption there exists a set $D \subseteq E$ of measure zero such that for all $x \in E \backslash D$ we have $g(x)=h(x)$. In particular, for these x we have $g(x) \leq h(x)$ and $h(x) \leq g(x)$. So $g \leq h$ a.e. (μ) on E and $h \leq g$ a.e. (μ) on E. Hence the result follows from two applications of Theorem 4.9.

So, a function may have its values altered on a set of measure zero without altering the value of its integral. In particular, by Lemma 4.5 we may assume that a non-negative integrable function is finite valued.
Example 15 (c.f. Example 13) On $([0,1], \mathcal{L}, \mu)$ the function

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { irrational }\end{cases}
$$

is 0 a.e. (μ) on $[0,1]$. So

$$
\int_{[0,1]} f d \mu=\int_{[0,1]} 0 d \mu=0 .
$$

