3.2 Simple Functions

Definition A function $f: X \rightarrow \mathbb{R}$ is simple if it takes only a finite number of different values.
Note these values must be finite. Writing them as $a_{i}, 1 \leq i \leq N$, and letting $A_{i}=\left\{x \in X: f(x)=a_{i}\right\}$, we can write

$$
f=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}
$$

where χ_{A} is the characteristic function of A, that is, $\chi_{A}(x)=1$ if $x \in A$, and 0 otherwise.

Lemma 3.7

The simple functions are closed under addition and multiplication.
Proof
Let $s=\sum_{i=1}^{M} a_{i} \chi_{A_{i}}$ and $t=\sum_{j=1}^{N} b_{j} \chi_{B_{j}}$ where $\bigcup_{i=1}^{M} A_{i}=\bigcup_{j=1}^{N} B_{j}=X$.
Define $C_{i j}=A_{i} \cap B_{j}$. Then $A_{i} \subseteq X=\bigcup_{j=1}^{N} B_{j}$ and so $A_{i}=A_{i} \cap \bigcup_{j=1}^{N} B_{j}$ $=\bigcup_{j=1}^{N} C_{i j}$. Similarly $B_{j}=\bigcup_{i=1}^{M} C_{i j}$. Since the $C_{i j}$ are disjoint this means that

$$
\chi_{A_{i}}=\sum_{j=1}^{N} \chi_{C_{i j}} \quad \text { and } \quad \chi_{B_{j}}=\sum_{i=1}^{M} \chi_{C_{i j}}
$$

Thus

$$
s=\sum_{i=1}^{M} \sum_{j=1}^{N} a_{i} \chi_{C_{i j}} \quad \text { and } \quad t=\sum_{i=1}^{M} \sum_{j=1}^{N} b_{j} \chi_{C_{i j}} .
$$

Hence

$$
s+t=\sum_{i=1}^{M} \sum_{j=1}^{N}\left(a_{i}+b_{j}\right) \chi_{C_{i j}} \quad \text { and } \quad s t=\sum_{i=1}^{M} \sum_{j=1}^{N} a_{i} b_{j} \chi_{C_{i j}}
$$

are simple functions.
Let \mathcal{F} be a σ-field on X. Assume that for a simple function f we have $A_{i} \in \mathcal{F}$ for all i. Then

$$
\{x: f(x)>c\}=\bigcup_{a_{i}>c} A_{i} \in \mathcal{F}
$$

for all $c \in \mathbb{R}$. Hence f is \mathcal{F}-measurable. Conversely assume that f is \mathcal{F} measurable. Order the values attained by f as $a_{1}<a_{2}<\ldots<a_{N}$. Given
$1 \leq j \leq N$ choose $a_{j-1}<c_{1}<a_{j}<c_{2}<a_{j+1}$. (If $j=1$ or N part of this requirement is empty.) Then

$$
\begin{aligned}
A_{j} & =\left(\bigcup_{a_{i}>c_{1}} A_{i}\right) \backslash\left(\bigcup_{a_{i}>c_{2}} A_{i}\right) \\
& =\left\{x: f(x)>c_{1}\right\} \backslash\left\{x: f(x)>c_{2}\right\} \\
& \in \mathcal{F} .
\end{aligned}
$$

Hence

Lemma 3.8

If $f:(X, \mathcal{F}) \rightarrow \mathbb{R}$ is a simple function then f is \mathcal{F}-measurable if, and only if, $A_{i} \in \mathcal{F}$ for all $1 \leq i \leq N$.

Corollary 3.9

The simple \mathcal{F}-measurable functions are closed under addition and multiplication.
Proof
Simply note in the proof of Lemma 3.7 that since A_{i} and B_{j} are in \mathcal{F} then $C_{i j} \in \mathcal{F}$.
Note If s is a simple function and $g: \mathbb{R} \rightarrow \mathbb{R}$ is any function whose domain contains the values of s then $g \circ s$ (defined by $(g \circ s)(x)=g(s(x)))$ is simple. In fact

$$
g \circ s=\sum_{i=1}^{N} g\left(a_{i}\right) \chi_{A_{i}}=\sum_{j=1}^{M} b_{j} \chi_{B_{i}}
$$

for some $M \leq N$ and where $B_{j}=\bigcup_{g\left(a_{i}\right)=b_{j}} A_{i}$. Also if s is \mathcal{F}-measurable then $g \circ s$ is too.

The next result is very important.

Theorem 3.10

Let f be a non-negative \mathcal{F}-measurable function. Then there exist a sequence of simple \mathcal{F}-measurable functions s_{n} such that $0 \leq s_{1} \leq \ldots \leq s_{n} \leq$ $s_{n+1} \leq \ldots$ and $\lim _{n \rightarrow \infty} s_{n}=f$.

Proof

We partition the range of f using the points in $\mathcal{D}_{n}=\left\{\frac{\nu}{2^{n}}: 0 \leq \nu \leq n 2^{n}\right\}$. Importantly, though trivial, we have $\mathcal{D}_{n} \subseteq \mathcal{D}_{n+1}$.

Define $s_{n}(x)=\max \left\{\gamma \in \mathcal{D}_{n}, \gamma \leq f(x)\right\}$.
Then $\mathcal{D}_{n} \subseteq \mathcal{D}_{n+1}$ means that for any given x,

$$
\left\{\gamma \in \mathcal{D}_{n}, \gamma \leq f(x)\right\} \subseteq\left\{\gamma \in \mathcal{D}_{n+1}, \gamma \leq f(x)\right\}
$$

and so

$$
\begin{aligned}
s_{n}(x) & =\max \left\{\gamma \in \mathcal{D}_{n}, \gamma \leq f(x)\right\} \\
& \leq \max \left\{\gamma \in \mathcal{D}_{n+1}, \gamma \leq f(x)\right\} \\
& =s_{n+1}(x)
\end{aligned}
$$

True for all x means that $s_{n} \leq s_{n+1}$ as required. It also means that $\lim _{n \rightarrow \infty} s_{n}(x)$ exists (using the extended definition of limit if necessary).

Look first at those x for which $f(x)$ is finite. Then for all n for which $n \geq f(x)$ we have $s_{n}(x)=\nu / 2^{n}$ for the $0 \leq \nu \leq n 2^{n}$ satisfying

$$
\frac{\nu}{2^{n}} \leq f(x)<\frac{\nu+1}{2^{n}}, \quad \text { that is } \quad s_{n}(x) \leq f(x)<s_{n}(x)+\frac{1}{2^{n}}
$$

Hence, by the sandwich rule, $\lim _{n \rightarrow \infty} s_{n}(x)=f(x)$.
Look now at x such that $f(x)=+\infty$. Then $s_{n}(x)=n$ for all n. Hence $\lim _{n \rightarrow \infty} s_{n}(x)=+\infty$ by the extended definition of limit. Thus $\lim _{n \rightarrow \infty} s_{n}(x)$ $=f(x)$.

True for all x means $\lim _{n \rightarrow \infty} s_{n}=f$.
Finally

$$
s_{n}(x)=\sum_{0 \leq \nu \leq n 2^{n}} \frac{\nu}{2^{n}} \chi_{A_{\nu, n}}(x)
$$

where

$$
\begin{aligned}
A_{\nu, n} & =\left\{x: \frac{\nu}{2^{n}} \leq f(x)<\frac{\nu+1}{2^{n}}\right\} \\
& =\left\{x: f(x)<\frac{\nu+1}{2^{n}}\right\} \backslash\left\{x: f(x)<\frac{\nu}{2^{n}}\right\}
\end{aligned}
$$

for $\nu \leq n 2^{n}-1$ while

$$
A_{n 2^{n}, n}=\{x: f(x) \geq n\} .
$$

In all cases the sets $A_{\nu, n} \in \mathcal{F}$. So the s_{n} are simple \mathcal{F}-measurable functions.

Combining Theorems 3.10 and 3.6 we see that a function $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{+}$ is \mathcal{F}-measurable if, and only if, there exists an increasing sequence of simple, \mathcal{F}-measurable functions converging to f.

Corollary 3.11

If $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ is \mathcal{F}-measurable then it is the limit of a sequence of simple \mathcal{F}-measurable functions.

Proof

As in the proof of Theorem 3.4(viii) we can write $f=f^{+}-f^{-}$where f^{+} and f^{-}are non-negative \mathcal{F}-measurable functions. So by Theorem 3.10 we can find sequences of simple, \mathcal{F}-measurable functions $s_{n} \rightarrow f^{+}$and $t_{n} \rightarrow f^{-}$ in which case $\left\{s_{n}-t_{n}\right\}_{n>1}$ is the required sequence of simple functions (using Lemma 3.7) converging to f.

Corollary 3.12

If $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ is \mathcal{F}-measurable and $g: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function whose domain contains the values of f then the composition function $g \circ f$ is \mathcal{F}-measurable.

Proof

By Corollary 3.11 we can find a sequence of simple, \mathcal{F}-measurable functions $s_{n} \rightarrow f$. By an earlier note the functions $g \circ s_{n}$ are simple and still \mathcal{F}-measurable for all n. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} g\left(s_{n}(x)\right) & =g\left(\lim _{n \rightarrow \infty} s_{n}(x)\right) \quad \text { since } g \text { is continuous, } \\
& =g(f(x)) \\
& =(g \circ f)(x)
\end{aligned}
$$

for all $x \in X$, i.e. $g \circ f=\lim _{n \rightarrow \infty} g \circ s_{n}$. Hence, by Theorem 3.6, $g \circ f$ is \mathcal{F}-measurable.

Example 12 If $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{+}$is \mathcal{F}-measurable then $\sin f, \exp (f)$ and $\log f$ are also \mathcal{F}-measurable on the set of x on which they are defined.

