3.2 Simple Functions

Definition A function $f : X \to \mathbb{R}$ is *simple* if it takes only a finite number of different values.

Note these values must be finite. Writing them as $a_i, 1 \le i \le N$, and letting $A_i = \{x \in X : f(x) = a_i\}$, we can write

$$f = \sum_{i=1}^{N} a_i \chi_{A_i}$$

where χ_A is the characteristic function of A, that is, $\chi_A(x) = 1$ if $x \in A$, and 0 otherwise.

Lemma 3.7

The simple functions are closed under addition and multiplication.

Proof

Let $s = \sum_{i=1}^{M} a_i \chi_{A_i}$ and $t = \sum_{j=1}^{N} b_j \chi_{B_j}$ where $\bigcup_{i=1}^{M} A_i = \bigcup_{j=1}^{N} B_j = X$. Define $C_{ij} = A_i \cap B_j$. Then $A_i \subseteq X = \bigcup_{j=1}^{N} B_j$ and so $A_i = A_i \cap \bigcup_{j=1}^{N} B_j$ $= \bigcup_{j=1}^{N} C_{ij}$. Similarly $B_j = \bigcup_{i=1}^{M} C_{ij}$. Since the C_{ij} are disjoint this means that

$$\chi_{A_i} = \sum_{j=1}^{N} \chi_{C_{ij}}$$
 and $\chi_{B_j} = \sum_{i=1}^{M} \chi_{C_{ij}}$.

Thus

$$s = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i \chi_{C_{ij}}$$
 and $t = \sum_{i=1}^{M} \sum_{j=1}^{N} b_j \chi_{C_{ij}}$.

Hence

$$s + t = \sum_{i=1}^{M} \sum_{j=1}^{N} (a_i + b_j) \chi_{C_{ij}}$$
 and $st = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i b_j \chi_{C_{ij}}$

are simple functions.

Let \mathcal{F} be a σ -field on X. Assume that for a simple function f we have $A_i \in \mathcal{F}$ for all i. Then

$$\{x: f(x) > c\} = \bigcup_{a_i > c} A_i \in \mathcal{F}$$

for all $c \in \mathbb{R}$. Hence f is \mathcal{F} -measurable. Conversely assume that f is \mathcal{F} -measurable. Order the values attained by f as $a_1 < a_2 < \ldots < a_N$. Given

 $1 \leq j \leq N$ choose $a_{j-1} < c_1 < a_j < c_2 < a_{j+1}$. (If j = 1 or N part of this requirement is empty.) Then

$$A_j = \left(\bigcup_{a_i > c_1} A_i\right) \setminus \left(\bigcup_{a_i > c_2} A_i\right)$$

= $\{x : f(x) > c_1\} \setminus \{x : f(x) > c_2\}$
 $\in \mathcal{F}.$

Hence

Lemma 3.8

If $f: (X, \mathcal{F}) \to \mathbb{R}$ is a simple function then f is \mathcal{F} -measurable if, and only if, $A_i \in \mathcal{F}$ for all $1 \leq i \leq N$.

Corollary 3.9

The simple \mathcal{F} -measurable functions are closed under addition and multiplication.

Proof

Simply note in the proof of Lemma 3.7 that since A_i and B_j are in \mathcal{F} then $C_{ij} \in \mathcal{F}$.

Note If s is a simple function and $g : \mathbb{R} \to \mathbb{R}$ is any function whose domain contains the values of s then $g \circ s$ (defined by $(g \circ s)(x) = g(s(x))$) is simple. In fact

$$g \circ s = \sum_{i=1}^{N} g(a_i) \chi_{A_i} = \sum_{j=1}^{M} b_j \chi_{B_i}$$

for some $M \leq N$ and where $B_j = \bigcup_{g(a_i)=b_j} A_i$. Also if s is \mathcal{F} -measurable then $g \circ s$ is too.

The next result is very important.

Theorem 3.10

Let f be a non-negative \mathcal{F} -measurable function. Then there exist a sequence of simple \mathcal{F} -measurable functions s_n such that $0 \leq s_1 \leq \ldots \leq s_n \leq s_{n+1} \leq \ldots$ and $\lim_{n\to\infty} s_n = f$.

Proof

We partition the range of f using the points in $\mathcal{D}_n = \left\{ \frac{\nu}{2^n} : 0 \le \nu \le n2^n \right\}$. Importantly, though trivial, we have $\mathcal{D}_n \subseteq \mathcal{D}_{n+1}$.

Define $s_n(x) = \max\{\gamma \in \mathcal{D}_n, \gamma \leq f(x)\}.$

Then $\mathcal{D}_n \subseteq \mathcal{D}_{n+1}$ means that for any given x,

$$\{\gamma \in \mathcal{D}_n, \gamma \le f(x)\} \subseteq \{\gamma \in \mathcal{D}_{n+1}, \gamma \le f(x)\}$$

and so

$$s_n(x) = \max\{\gamma \in \mathcal{D}_n, \gamma \le f(x)\} \\ \le \max\{\gamma \in \mathcal{D}_{n+1}, \gamma \le f(x)\} \\ = s_{n+1}(x).$$

True for all x means that $s_n \leq s_{n+1}$ as required. It also means that $\lim_{n\to\infty} s_n(x)$ exists (using the extended definition of limit if necessary).

Look first at those x for which f(x) is finite. Then for all n for which $n \ge f(x)$ we have $s_n(x) = \nu/2^n$ for the $0 \le \nu \le n2^n$ satisfying

$$\frac{\nu}{2^n} \le f(x) < \frac{\nu+1}{2^n}$$
, that is $s_n(x) \le f(x) < s_n(x) + \frac{1}{2^n}$.

Hence, by the sandwich rule, $\lim_{n\to\infty} s_n(x) = f(x)$.

Look now at x such that $f(x) = +\infty$. Then $s_n(x) = n$ for all n. Hence $\lim_{n\to\infty} s_n(x) = +\infty$ by the extended definition of limit. Thus $\lim_{n\to\infty} s_n(x) = f(x)$.

True for all x means $\lim_{n\to\infty} s_n = f$.

Finally

$$s_n(x) = \sum_{0 \le \nu \le n2^n} \frac{\nu}{2^n} \chi_{A_{\nu,n}}(x)$$

where

$$A_{\nu,n} = \left\{ x : \frac{\nu}{2^n} \le f(x) < \frac{\nu+1}{2^n} \right\} \\ = \left\{ x : f(x) < \frac{\nu+1}{2^n} \right\} \setminus \left\{ x : f(x) < \frac{\nu}{2^n} \right\}$$

for $\nu \leq n2^n - 1$ while

$$A_{n2^n,n} = \{x : f(x) \ge n\}.$$

In all cases the sets $A_{\nu,n} \in \mathcal{F}$. So the s_n are simple \mathcal{F} -measurable functions.

Combining Theorems 3.10 and 3.6 we see that a function $f : (X, \mathcal{F}) \to \mathbb{R}^+$ is \mathcal{F} -measurable if, and only if, there exists an increasing sequence of simple, \mathcal{F} -measurable functions converging to f.

Corollary 3.11

If $f: (X, \mathcal{F}) \to \mathbb{R}^*$ is \mathcal{F} -measurable then it is the limit of a sequence of simple \mathcal{F} -measurable functions.

Proof

As in the proof of Theorem 3.4(viii) we can write $f = f^+ - f^-$ where f^+ and f^- are non-negative \mathcal{F} -measurable functions. So by Theorem 3.10 we can find sequences of simple, \mathcal{F} -measurable functions $s_n \to f^+$ and $t_n \to f^$ in which case $\{s_n - t_n\}_{n \ge 1}$ is the required sequence of simple functions (using Lemma 3.7) converging to f.

Corollary 3.12

If $f : (X, \mathcal{F}) \to \mathbb{R}^*$ is \mathcal{F} -measurable and $g : \mathbb{R} \to \mathbb{R}$ a continuous function whose domain contains the values of f then the composition function $g \circ f$ is \mathcal{F} -measurable.

Proof

By Corollary 3.11 we can find a sequence of simple, \mathcal{F} -measurable functions $s_n \to f$. By an earlier note the functions $g \circ s_n$ are simple and still \mathcal{F} -measurable for all n. Then

$$\lim_{n \to \infty} g(s_n(x)) = g(\lim_{n \to \infty} s_n(x)) \text{ since } g \text{ is continuous,}$$
$$= g(f(x))$$
$$= (g \circ f)(x)$$

for all $x \in X$, i.e. $g \circ f = \lim_{n \to \infty} g \circ s_n$. Hence, by Theorem 3.6, $g \circ f$ is \mathcal{F} -measurable.

Example 12 If $f : (X, \mathcal{F}) \to \mathbb{R}^+$ is \mathcal{F} -measurable then $\sin f$, $\exp(f)$ and $\log f$ are also \mathcal{F} -measurable on the set of x on which they are defined.